hypoxic acclimation
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 224 ◽  
pp. 112688
Author(s):  
Lin Zeng ◽  
Wen-Cheng Li ◽  
Hui Zhang ◽  
Ping Cao ◽  
Chun-Xiang Ai ◽  
...  

Author(s):  
Christian Carnevale ◽  
Douglas A. Syme ◽  
A. Kurt Gamperl

Whether hypoxic acclimation influences nitric oxide (NO)-mediated control of fish cardiac function is not known. Thus, we measured the function / performance of myocardial strips from normoxia and hypoxia-acclimated (40% air saturation; ~ 8 kPa O2) trout at several frequencies (20 - 80 contractions min-1) and two muscle strain amplitudes (8 and 14%) when exposed to increasing concentrations of the NO donor sodium nitroprusside (SNP) (10-9 to 10-4 M). Further, we examined the influence of: 1) nitric oxide synthase (NOS) produced NO (by blocking NOS with 10-4 M L-NMMA); and 2) soluble guanylyl cyclase mediated, NOS-independent, NO effects (i.e., after blockade with 10-4 M ODQ), on myocardial contractility. Hypoxic acclimation increased twitch duration by 8-10% and decreased mass-specific net power by ~35%. However, hypoxic acclimation only had minor impacts on the effects of SNP and the two blockers on myocardial function. The most surprising result of this study was the degree to which contraction frequency and strain amplitude influenced NO-mediated effects on myocardial power. For example, at 8% strain 10-4 SNP resulted in a decrease in net power of ~30% at 20 min-1 but an increase of ~20% at 80 min-1, and this effect was magnified at 14% strain. This study: suggests that hypoxic acclimation has only minor effects on NO-mediated myocardial contractility in salmonids; is the first to report the highly frequency- and strain-dependent nature of NO effects on myocardial contractility in fishes; and supports previous work showing that NO effects on the heart (myocardium) are finely tuned spatio-temporally.


2020 ◽  
Vol 318 (2) ◽  
pp. R214-R226 ◽  
Author(s):  
C. Carnevale ◽  
J. C. Roberts ◽  
D. A. Syme ◽  
A. K. Gamperl

Cardiac stroke volume (SV) is compromised in Atlantic cod and rainbow trout following acclimation to hypoxia (i.e., 40% air saturation; ~8 kPa O2) at 10–12°C, and this is not due to changes in heart morphometrics or maximum achievable in vitro end-diastolic volume. To examine if this diminished SV may be related to compromised myocardial contractility, we used the work-loop method to measure work and power in spongy myocardial strips from normoxic- and hypoxic-acclimated steelhead trout when exposed to decreasing Po2 levels (21 to 1.5 kPa) at several frequencies (30–90 contractions/min) at 14°C (their acclimation temperature). Work required to lengthen the muscle, as during filling of the heart, was strongly frequency dependent (i.e., increased with contraction rate) but was not affected by hypoxic acclimation or test Po2. In contrast, although shortening work was less frequency dependent, this parameter and network (and power) 1) were consistently lower (by ~30–50 and ~15%, respectively) in strips from hypoxic-acclimated fish and 2) fell by ~40–50% in both groups from 20 to 1.5 kPa Po2, despite the already-reduced myocardial performance in the hypoxic-acclimated group. In addition, strips from hypoxic-acclimated trout showed a poorer recovery of net power (by ~15%) when returned to normoxia. These results strongly suggest that hypoxic acclimation reduces myocardial contractility, and in turn, may limit SV (possibly by increasing end-systolic volume), but that this diminished performance does not improve the capacity to maintain myocardial performance under oxygen limiting conditions.


2019 ◽  
Vol 119 (11-12) ◽  
pp. 2513-2527 ◽  
Author(s):  
Alexandros Sotiridis ◽  
Panagiotis Miliotis ◽  
Urša Ciuha ◽  
Maria Koskolou ◽  
Igor B. Mekjavic

2019 ◽  
Vol 286 (1903) ◽  
pp. 20190339 ◽  
Author(s):  
T. S. Harter ◽  
F. S. Zanuzzo ◽  
C. T. Supuran ◽  
A. K. Gamperl ◽  
C. J. Brauner

A successful spawning migration in salmon depends on their athletic ability, and thus on efficient cardiovascular oxygen (O 2 ) transport. Most teleost fishes have highly pH-sensitive haemoglobins (Hb) that can release large amounts of O 2 when the blood is acidified at the tissues. We hypothesized that plasma-accessible carbonic anhydrase (paCA; the enzyme that catalyses proton production from CO 2 ) is required to acidify the blood at the tissues and promote tissue O 2 extraction. Previous studies have reported an elevated tissue O 2 extraction in hypoxia-acclimated teleosts that may also be facilitated by paCA. Thus, to create experimental contrasts in tissue O 2 extraction, Atlantic salmon were acclimated to normoxia or hypoxia (40% air saturation for more than six weeks), and the role of paCA in enhancing tissue O 2 extraction was tested by inhibiting paCA at rest and during submaximal exercise. Our results show that: (i) in both acclimation groups, the inhibition of paCA increased cardiac output by one-third, indicating a role of paCA in promoting tissue O 2 extraction during exercise, recovery and at rest; (ii) the recruitment of paCA was plastic and increased following hypoxic acclimation; and (iii) maximal exercise performance in salmon, and thus a successful spawning migration, may not be possible without paCA.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Antonela Romina Terrizzi ◽  
María Inés Conti ◽  
María Pilar Martínez ◽  
Javier Fernández-Solari

The exposition to hypoxia is a stressful stimulus, and the organism develops acclimation mechanisms to ensure homeostasis, but if this fails, it leads to the development of pathological processes. Considering the large number of people under hypoxic conditions, it is of utmost importance to study the mechanisms implicated in hypoxic acclimation in oral tissues and the possible alteration of some important inflammatory markers that regulate salivary and periodontal function. It is the aim of the present study to analyze submandibular (SMG) and periodontal status of animals chronically exposed to continuous (CCH) or intermittent (CIH) hypoxia in order to elucidate the underlying molecular mechanisms that may lead to hypoxic acclimation. Adult Wistar rats were exposed to CCH or CIH simulating 4200 meters of altitude during 90 days. Salivary secretion was decreased in animals exposed to hypoxia, being lower in CIH, together with increased prostaglandin E2 (PGE2) content, TBARS concentration, and the presence of apoptotic nuclei and irregular secretion granules in SMG. AQP-5 mRNA levels decreased in both hypoxic groups. Only the CCH group showed higher HIF-1α staining, while CIH alone exhibited interradicular bone loss and increased concentration of the bone resorption marker CTX-I. In summary, animals exposed to CIH show a worse salivary secretion rate, which related with higher levels of PGE2, suggesting a negative role of this inflammatory mediator during hypoxia acclimation. We link the weak immunorreactivity of HIF-1α in CIH with improper hypoxia acclimation, which is necessary to sustaining SMG physiology under this environmental condition. The alveolar bone loss observed in CIH rats could be due mainly to a direct effect of PGE2, as suggested by its higher content in gingival tissue, but also to the indirect effect of hyposalivation. This study may eventually contribute to finding therapeutics to treat the decreased salivary flow, improving in that way oral health.


Sign in / Sign up

Export Citation Format

Share Document