scholarly journals Climate and Environmental Benefit Study of PV Resource Development: Case Study of Angola

2021 ◽  
Author(s):  
Yu Lei ◽  
Xi Lu ◽  
Ying Wang ◽  
Haoqiang Guo ◽  
Yu Wang ◽  
...  

Vigorously promoting the development of photovoltaic (PV) resources is a positive measure taken by humanity in response to the changes in global climate and environment. At the same time, combining photovoltaic power generation systems with traditional power generation systems, using the advantages of different power generation systems to achieve real-time scheduling optimization has become an urgent problem to be solved in engineering applications. This paper attempts to study the climate and environmental benefits of the development of photovoltaic resource in Africa by taking Angola as an example based on actual project data. According to the characteristics, load requirements, seasonal characteristics and actual engineering background of Tombwa in Angola, a baseline Scenario and four comparative Scenarios were established, and the operating costs of the five Scenarios in local rainy season and dry season were obtained respectively. The cost of electricity for the five Scenarios calculated subsequently. Through real-time scheduling and optimization of the software, the emission characteristics of CO2, NOx and CO under five Scenarios are obtained, and the climate benefits and environmental benefits of the five scenarios are further analyzed and compared. The results show that the development of photovoltaic resources in Angola has good climate and environmental benefits. In addition, the combine application of diesel, PV and battery power system will be the most effective of the five Scenarios to reduce the CO2 emissions with the lowest levelized cost of electricity (LCOE) of 0.38 yuan/kwh, as a cost-effective solution in remote areas of Angola, Africa.

2019 ◽  
Vol 10 (4) ◽  
pp. 1633-1643 ◽  
Author(s):  
Saber Talari ◽  
Miadreza Shafie-khah ◽  
Yue Chen ◽  
Wei Wei ◽  
Pedro D. Gaspar ◽  
...  

2021 ◽  
Author(s):  
Antoine Bertout ◽  
Joël Goossens ◽  
Emmanuel Grolleau ◽  
Roy Jamil ◽  
Xavier Poczekajlo

2021 ◽  
Vol 13 (6) ◽  
pp. 3400
Author(s):  
Jia Ning ◽  
Sipeng Hao ◽  
Aidong Zeng ◽  
Bin Chen ◽  
Yi Tang

The high penetration of renewable energy brings great challenges to power system operation and scheduling. In this paper, a multi-timescale coordinated method for source-grid-load is proposed. First, the multi-timescale characteristics of wind forecasting power and demand response (DR) resources are described, and the coordinated framework of source-grid-load is presented under multi-timescale. Next, economic scheduling models of source-grid-load based on multi-timescale DR under network constraints are established in the process of day-ahead scheduling, intraday scheduling, and real-time scheduling. The loads are classified into three types in terms of different timescale. The security constraints of grid side and time-varying DR potential are considered. Three-stage stochastic programming is employed to schedule resources of source side and load side in day-ahead, intraday, and real-time markets. The simulations are performed in a modified Institute of Electrical and Electronics Engineers (IEEE) 24-node system, which shows a notable reduction in total cost of source-grid-load scheduling and an increase in wind accommodation, and their results are proposed and discussed against under merely two timescales, which demonstrates the superiority of the proposed multi-timescale models in terms of cost and demand response quantity reduction.


Sign in / Sign up

Export Citation Format

Share Document