Optical projection tomography can be used to investigate spatial distribution of chondrocytes in three-dimensional biomaterial scaffolds for cartilage tissue engineering

2014 ◽  
Vol 24 (3) ◽  
pp. 1549-1553
Author(s):  
Elina Järvinen ◽  
Virpi Muhonen ◽  
Anne-Marie Haaparanta ◽  
Minna Kellomäki ◽  
Ilkka Kiviranta
2019 ◽  
Vol 11 (40) ◽  
pp. 36359-36370 ◽  
Author(s):  
Yaqiang Li ◽  
Yanqun Liu ◽  
Xiaowei Xun ◽  
Wei Zhang ◽  
Yong Xu ◽  
...  

2016 ◽  
Vol 4 (20) ◽  
pp. 3562-3574 ◽  
Author(s):  
E. A. Aisenbrey ◽  
S. J. Bryant

Three dimensional hydrogels are a promising vehicle for delivery of adult human bone-marrow derived mesenchymal stem cells (hMSCs) for cartilage tissue engineering.


Author(s):  
Hui Wang ◽  
Zhonghan Wang ◽  
He Liu ◽  
Jiaqi Liu ◽  
Ronghang Li ◽  
...  

Although there have been remarkable advances in cartilage tissue engineering, construction of irregularly shaped cartilage, including auricular, nasal, tracheal, and meniscus cartilages, remains challenging because of the difficulty in reproducing its precise structure and specific function. Among the advanced fabrication methods, three-dimensional (3D) printing technology offers great potential for achieving shape imitation and bionic performance in cartilage tissue engineering. This review discusses requirements for 3D printing of various irregularly shaped cartilage tissues, as well as selection of appropriate printing materials and seed cells. Current advances in 3D printing of irregularly shaped cartilage are also highlighted. Finally, developments in various types of cartilage tissue are described. This review is intended to provide guidance for future research in tissue engineering of irregularly shaped cartilage.


2018 ◽  
Vol 83 ◽  
pp. 195-201 ◽  
Author(s):  
Xingchen Yang ◽  
Zhenhui Lu ◽  
Huayu Wu ◽  
Wei Li ◽  
Li Zheng ◽  
...  

2011 ◽  
Vol 17 (11-12) ◽  
pp. 1549-1560 ◽  
Author(s):  
Shan-hui Hsu ◽  
Tsung-Bin Huang ◽  
Shun-Jung Cheng ◽  
Su-Ying Weng ◽  
Ching-Lin Tsai ◽  
...  

Biomaterials ◽  
2005 ◽  
Vol 26 (6) ◽  
pp. 599-609 ◽  
Author(s):  
Wan-Ju Li ◽  
Richard Tuli ◽  
Chukwuka Okafor ◽  
Assia Derfoul ◽  
Keith G Danielson ◽  
...  

2020 ◽  
Author(s):  
Liangquan Peng ◽  
Yong He ◽  
Weimin Zhu ◽  
Wei Lu ◽  
Yong Huang ◽  
...  

Abstract Background Composite scaffolds of poly(lactic-co-glycolic acid) (PLGA) and PLGA/COL I were developed by a low-temperature deposition manufacturing (LDM) technique using three-dimensional printing technology. Their physical properties were tested, and the scaffolds were then used as cell culture platforms to prepare an ideal scaffold for cartilage tissue engineering. Methods The LDM technique was used to fabricate PLGA and PLGA/COL I composite scaffolds. The macrostructure, micromorphology, porosity, hydrophobicity, mechanical properties, and chemical structure of these scaffolds were examined. Primary chondrocytes were isolated and identified, second-passage cells were seeded onto the two scaffolds, and the adhesion and proliferation of the cells were determined. Results Both the PLGA and PLGA/COL I scaffolds prepared by LDM displayed a regular three-dimensional structure with high porosity. The PLGA scaffold had better mechanical properties than the PLGA/COL I scaffold, while the latter had significantly higher hydrophilicity than the former. The PLGA/COL I scaffold cultured with chondrocytes exhibited a higher adhesion rate and proliferation rate than the PLGA/COL I scaffold. Conclusion The novel PLGA/COL I composite scaffold printed by the LDM technique exhibited favourable biocompatibility and biomechanical characteristics and could be a good candidate for cartilage tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document