Orthodontic tunnel miniscrews with and without TiO2 nanotube arrays as a drug-delivery system: In vivo study

2016 ◽  
Vol 27 (4) ◽  
pp. 375-387 ◽  
Author(s):  
Bong-Kuen Cha ◽  
Dong-Soon Choi ◽  
Insan Jang ◽  
Byung-Hak Choe ◽  
Won-Youl Choi
2020 ◽  
Vol 60 ◽  
pp. 102039
Author(s):  
Majid Hassanzadeganroudsari ◽  
Majid Soltani ◽  
Amir Heydarinasab ◽  
Vasso Apostolopoulos ◽  
Azim Akbarzadehkhiyavi ◽  
...  

2018 ◽  
Vol 29 (3) ◽  
pp. 157
Author(s):  
Lina Winarti ◽  
Suwaldi Suwaldi ◽  
Ronny Martien ◽  
Lukman Hakim

Drug Delivery ◽  
2018 ◽  
Vol 25 (1) ◽  
pp. 417-425 ◽  
Author(s):  
Mohamed Ali ◽  
Amira Abdel Motaal ◽  
Mohammed A. Ahmed ◽  
Abdulrhman Alsayari ◽  
Omaima N. El-Gazayerly

Author(s):  
Behin Sundara Raj ◽  
I S R Punitha ◽  
M J Gifty

Since rheumatoid arthritis patients experience severe pain, inflammation, and joint stiffness in the early morning hours a pulsatile drug delivery system of a suitable anti-inflammatory drug that is administered at bedtime but release the drug in the early morning would be a promising system. The objective of this work was to develop a pulsatile release tablet containing a combination of ibuprofen and ranitidine HCl from which ibuprofen gets released after a lag time of 6-7 hours. The methodology involves; analytical method development for simultaneous estimation of combination drugs, development of pulsatile release tablet and an in vivo study in rats. Lag time was controlled by coating the rapid release core tablet with different grades and concentrations of HPMC polymer. A floating gastroretentive layer was applied on top to prevent metabolism of ranitidine at the last part of the intestine. Six different formulations were prepared with three different concentrations of HPMCK4M and HPMCK100M. In vitro studies showed that the lag time increased with an increase in both concentration and viscosity of polymers. The formulation where the core tablet was coated with 100 mg of HPMCK100M had an optimum lag time of 6.3 hrs. In vivo study evaluated the ulcer protection of the formulation in four animal groups; first group remained as control, the second group received ibuprofen at a dose of 180 mg/kg, third and fourth groups received a combination of both the drugs but ranitidine in different doses. Based on this research, it can be concluded that pulsatile release of ibuprofen tablets can be successfully formulated by using HPMC polymers. The usage of ranitidine along with ibuprofen reduces the ulcerogenecity of the later.


Soft Matter ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 518-525 ◽  
Author(s):  
Bin Yang ◽  
Sheng-Yong Geng ◽  
Xin-Ming Liu ◽  
Jian-Tao Wang ◽  
Yong-Kui Chen ◽  
...  

Author(s):  
ShirishaG. Suddala ◽  
S. K. Sahoo ◽  
M. R. Yamsani

Objective: The objective of this research work was to develop and evaluate the floating– pulsatile drug delivery system (FPDDS) of meloxicam intended for Chrono pharmacotherapy of rheumatoid arthritis. Methods: The system consisting of drug containing core, coated with hydrophilic erodible polymer, which is responsible for a lag phase for pulsatile release, top cover buoyant layer was prepared with HPMC K4M and sodium bicarbonate, provides buoyancy to increase retention of the oral dosage form in the stomach. Meloxicam is a COX-2 inhibitor used to treat joint diseases such as osteoarthritis and rheumatoid arthritis. For rheumatoid arthritis Chrono pharmacotherapy has been recommended to ensure that the highest blood levels of the drug coincide with peak pain and stiffness. Result and discussion: The prepared tablets were characterized and found to exhibit satisfactory physico-chemical characteristics. Hence, the main objective of present work is to formulate FPDDS of meloxicam in order to achieve drug release after pre-determined lag phase. Developed formulations were evaluated for in vitro drug release studies, water uptake and erosion studies, floating behaviour and in vivo radiology studies. Results showed that a certain lag time before drug release which was due to the erosion of the hydrophilic erodible polymer. The lag time clearly depends on the type and amount of hydrophilic polymer which was applied on the inner cores. Floating time and floating lag time was controlled by quantity and composition of buoyant layer. In vivo radiology studies point out the capability of the system of longer residence time of the tablets in the gastric region and releasing the drug after a programmed lag time. Conclusion: The optimized formulation of the developed system provided a lag phase while showing the gastroretension followed by pulsatile drug release that would be beneficial for chronotherapy of rheumatoid arthritis and osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document