Chapter 11. Neuro-Symbolic Semantic Reasoning

2021 ◽  
Author(s):  
Bassem Makni ◽  
Monireh Ebrahimi ◽  
Dagmar Gromann ◽  
Aaron Eberhart

Humans have astounding reasoning capabilities. They can learn from very few examples while providing explanations for their decision-making process. In contrast, deep learning techniques–even though robust to noise and very effective in generalizing across several fields including machine vision, natural language understanding, speech recognition, etc. –require large amounts of data and are mostly unable to provide explanations for their decisions. Attaining human-level robust reasoning requires combining sound symbolic reasoning with robust connectionist learning. However, connectionist learning uses low-level representations–such as embeddings–rather than symbolic representations. This challenge constitutes what is referred to as the Neuro-Symbolic gap. A field of study to bridge this gap between the two paradigms has been called neuro-symbolic integration or neuro-symbolic computing. This chapter aims to present approaches that contribute towards bridging the Neuro-Symbolic gap specifically in the Semantic Web field, RDF Schema (RDFS) and EL+ reasoning and to discuss the benefits and shortcomings of neuro-symbolic reasoning.

Author(s):  
Ming-Sheng Ying ◽  
Yuan Feng ◽  
Sheng-Gang Ying

AbstractMarkov decision process (MDP) offers a general framework for modelling sequential decision making where outcomes are random. In particular, it serves as a mathematical framework for reinforcement learning. This paper introduces an extension of MDP, namely quantum MDP (qMDP), that can serve as a mathematical model of decision making about quantum systems. We develop dynamic programming algorithms for policy evaluation and finding optimal policies for qMDPs in the case of finite-horizon. The results obtained in this paper provide some useful mathematical tools for reinforcement learning techniques applied to the quantum world.


2018 ◽  
Vol 31 (3) ◽  
pp. 429-435 ◽  
Author(s):  
Kathryn Rendell ◽  
Irena Koprinska ◽  
Andre Kyme ◽  
Anja A Ebker‐White ◽  
Michael M Dinh

2019 ◽  
Vol 8 (4) ◽  
pp. 2527-2530

These days new technologies have been introduced by this new academic trends also have been came into existence into the education system. And this leads to huge amounts of data which makes a big challenge for the students to store the preferred course. For this many data mining tools have been invented to convert the unregulated data into structured format to understand the meaningful information. As we know that Hadoop is a distributed file system which is used to hold huge amounts of data this stores the files in a redundant fashion across multiple machines. Due to this it leads to failure and parallel applications do not work. To avoid this problem we are using Mapreduce for decision making of students in order to choose their preferred course for industrial training purpose for their effective learning techniques to increase their knowledge and capability.


2016 ◽  
Author(s):  
Ευτύχιος Πρωτοπαπαδάκης

Ο όρος μάθηση με μερική επίβλεψη αναφέρεται σε ένα ευρύ πεδίο τεχνικών μηχανικής μάθησης, οι οποίες χρησιμοποιούν τα μη τιτλοφορημένα δεδομένα για να εξάγουν επιπλέον ωφέλιμη πληροφορία. Η μερική επίβλεψη αντιμετωπίζει προβλήματα που σχετίζονται με την επεξεργασία και την αξιοποίηση μεγάλου όγκου δεδομένων και τα όποια κόστη σχετίζονται με αυτά (π.χ. χρόνος επεξεργασίας, ανθρώπινα λάθη). Απώτερος σκοπός είναι η ασφαλή εξαγωγή συμπερασμάτων, κανόνων ή προτάσεων. Τα μοντέλα λήψης απόφασης που χρησιμοποιούν τεχνικές μερικής μάθησης έχουν ποικίλα πλεονεκτήματα. Σε πρώτη φάση, χρειάζονται μικρό πλήθος τιτλοφορημένων δεδομένων για την αρχικοποίηση τους. Στη συνέχεια, τα νέα δεδομένα που θα εμφανιστούν αξιοποιούνται και τροποποιούν κατάλληλα το μοντέλο. Ως εκ τούτου, έχουμε ένα συνεχώς εξελισσόμενο μοντέλο λήψης αποφάσεων, με την ελάχιστη δυνατή προσπάθεια.Τεχνικές που προσαρμόζονται εύκολα και οικονομικά είναι οι κατεξοχήν κατάλληλες για τον έλεγχο συστημάτων, στα οποία παρατηρούνται συχνές αλλαγές στον τρόπο λειτουργίας. Ενδεικτικά πεδία εφαρμογής εφαρμογής ευέλικτων συστημάτων υποστήριξης λήψης αποφάσεων με μερική μάθηση είναι: η επίβλεψη γραμμών παραγωγής, η επιτήρηση θαλάσσιων συνόρων, η φροντίδα ηλικιωμένων, η εκτίμηση χρηματοπιστωτικού κινδύνου, ο έλεγχος για δομικές ατέλειες και η διαφύλαξη της πολιτιστικής κληρονομιάς.


2021 ◽  
Vol 11 (2) ◽  
pp. 38-52
Author(s):  
Abhinav Juneja ◽  
Sapna Juneja ◽  
Sehajpreet Kaur ◽  
Vivek Kumar

Diabetes has become one of the common health issues in people of all age groups. The disease is responsible for many difficulties in lifestyle and is represented by imbalance in hyperglycemia. If kept untreated, diabetes can raise the chance of heart attack, diabetic nephropathy, and other disorders. Early diagnosis of diabetes helps to maintain a healthy lifestyle. Machine learning is a capability of machine to learn from past pattern and occurrences and converge with experience to optimise and give decision. In the current research, the authors have employed machine learning techniques and used multi-criteria decision-making approach in Pima Indian diabetes dataset. To classify the patients, they examined several different supervised and unsupervised predictive models. After detailed analysis, it has been observed that the supervised learning algorithms outweigh the unsupervised algorithms due to the output class being a nominal classified domain.


2021 ◽  
Author(s):  
Serkan Varol ◽  
Serkan Catma ◽  
Diana Reindl ◽  
Elizabeth Serieux

BACKGROUND Vaccine refusal still poses a risk to reaching herd immunity in the United States. The existing literature focuses on identifying the predictors that would impact the willingness to accept (WTA) vaccines using survey data. These variables range from the socio-demographic characteristics of the participants to the perceptions and attitudes towards the vaccines so each variable’s statistical relationship with the WTA a vaccine can be investigated. However, while the results of these studies may have important implications for understanding vaccine hesitancy by offering interpretation of the statistical relationships, the prediction of vaccine decision-making has rarely been investigated OBJECTIVE We aimed to identify the factors that contribute to the prediction of COVID-19 vaccine acceptors and refusers using machine learning METHODS A nationwide survey was administered online in November, 2020 to assess American public perceptions and attitudes towards COVID-19 vaccines. Seven machine learning techniques were utilized to identify the model with the highest predictive power. Moreover, a set of variables that would contribute the most to the predictions of vaccine acceptors and refusers was identified using Gini importance based on Random Forest structure RESULTS The resulting machine learning algorithm has better prediction ability for willingness to accept (82%) versus reject (51%) a COVID-19 vaccine. In terms of predictive success, the Random Forest model outperformed the other machine learning techniques with a 69.52% accuracy rate. Worrying about (re) contracting Covid 19 and opinions regarding mandatory face covering were identified as the most important predictors of vaccine decision-making CONCLUSIONS The complexity of vaccine hesitancy needs to be investigated thoroughly before the threshold needed to reach population immunity can be achieved. Predictive analytics can help the public health officials design and deliver individually tailored vaccination programs that would increase the overall vaccine uptake.


2016 ◽  
Vol 9 (3) ◽  
pp. 212-225 ◽  
Author(s):  
Aseema Kulkarni ◽  
Ajit More

Prediction of stock prices using various computer programs is on rise. Popularly known in the field of finance as algorithmic trading, a radical transformation has taken place in the field of stock markets for decision making through automated decision making agents. Machine learning techniques can be applied for predicting stock prices. This paper attempts to study the various stock market forecasting processes available in the forecasting plugin of the WEKA tool. Twenty experiments have been conducted on twenty different stocks to analyse the prediction capacity of the tool.


Sign in / Sign up

Export Citation Format

Share Document