scholarly journals Formulation of a Prediction Index with the Help of WEKA Tool for Guiding the Stock Market Investors

2016 ◽  
Vol 9 (3) ◽  
pp. 212-225 ◽  
Author(s):  
Aseema Kulkarni ◽  
Ajit More

Prediction of stock prices using various computer programs is on rise. Popularly known in the field of finance as algorithmic trading, a radical transformation has taken place in the field of stock markets for decision making through automated decision making agents. Machine learning techniques can be applied for predicting stock prices. This paper attempts to study the various stock market forecasting processes available in the forecasting plugin of the WEKA tool. Twenty experiments have been conducted on twenty different stocks to analyse the prediction capacity of the tool.

2020 ◽  
pp. 34-47
Author(s):  
Sushma Jaiswal ◽  
Tarun Jaiswal

Stock marketplace tradeoff is an endless investment implementation worldwide. It has capabilities to produce maximum profits on stockholders’venture. In the globe, the stock-market forecasting is a very puzzling job for the stock-market investors. The task is very challenging because of the ambiguity and precariousness of the stock market values. Due to commercialization and data mining modules the growth of stock marketplaces, it is essential to predict marketplace variations quick and easy way. Recently, ANN is very famous and attracted to investors for its easy-going process in the stock-market. ANN plays a very imperative part in today’s stock-market for decision making and prediction. The Multi-Layer-Perceptron methods are outperformed then other methods. Also, these approaches have countless likelihoods to envisage with high accuracy than other approaches. In this review paper, neural-based envisage implements are measured to foresee the imminent stock-prices and their enactment dimensions will be assessed. Here we deliver a broad impression of the soft computing based stock-market likelihood with emphasis on enabling technologies, issues and application issues. Soft computing is attracting a lot of researchers and industrial innovation. The purpose of this paper is to presents a survey of the existing soft computing method applied to stock market prediction, their comparison and possible solution. From the reviewed articles, it is obvious that investigators have resolutely intensive on the growth of fusion forecast representations and considerable effort has also been completed on the use of broadcasting data for stock marketplace forecast. It is also enlightening that most of the literature has focused on the forecast of stock prices in developing marketplace.


2019 ◽  
Vol 6 (3) ◽  
pp. 1-15 ◽  
Author(s):  
Jai Prakash Verma ◽  
Sudeep Tanwar ◽  
Sanjay Garg ◽  
Ishit Gandhi ◽  
Nikita H. Bachani

The stock market is very volatile and non-stationary and generates huge volumes of data in every second. In this article, the existing machine learning algorithms are analyzed for stock market forecasting and also a new pattern-finding algorithm for forecasting stock trend is developed. Three approaches can be used to solve the problem: fundamental analysis, technical analysis, and the machine learning. Experimental analysis done in this article shows that the machine learning could be useful for investors to make profitable decisions. In order to conduct these processes, a real-time dataset has been obtained from the Indian stock market. This article learns the model from Indian National Stock Exchange (NSE) data obtained from Yahoo API to forecast stock prices and targets to make a profit over time. In this article, two separate algorithms and methodologies are analyzed to forecast stock market trends and iteratively improve the model to achieve higher accuracy. Results are showing that the proposed pattern-based customized algorithm is more accurate (10 to 15%) as compared to other two machine learning techniques, which are also increased as the time window increases.


2018 ◽  
Vol 31 (3) ◽  
pp. 429-435 ◽  
Author(s):  
Kathryn Rendell ◽  
Irena Koprinska ◽  
Andre Kyme ◽  
Anja A Ebker‐White ◽  
Michael M Dinh

2016 ◽  
Author(s):  
Ευτύχιος Πρωτοπαπαδάκης

Ο όρος μάθηση με μερική επίβλεψη αναφέρεται σε ένα ευρύ πεδίο τεχνικών μηχανικής μάθησης, οι οποίες χρησιμοποιούν τα μη τιτλοφορημένα δεδομένα για να εξάγουν επιπλέον ωφέλιμη πληροφορία. Η μερική επίβλεψη αντιμετωπίζει προβλήματα που σχετίζονται με την επεξεργασία και την αξιοποίηση μεγάλου όγκου δεδομένων και τα όποια κόστη σχετίζονται με αυτά (π.χ. χρόνος επεξεργασίας, ανθρώπινα λάθη). Απώτερος σκοπός είναι η ασφαλή εξαγωγή συμπερασμάτων, κανόνων ή προτάσεων. Τα μοντέλα λήψης απόφασης που χρησιμοποιούν τεχνικές μερικής μάθησης έχουν ποικίλα πλεονεκτήματα. Σε πρώτη φάση, χρειάζονται μικρό πλήθος τιτλοφορημένων δεδομένων για την αρχικοποίηση τους. Στη συνέχεια, τα νέα δεδομένα που θα εμφανιστούν αξιοποιούνται και τροποποιούν κατάλληλα το μοντέλο. Ως εκ τούτου, έχουμε ένα συνεχώς εξελισσόμενο μοντέλο λήψης αποφάσεων, με την ελάχιστη δυνατή προσπάθεια.Τεχνικές που προσαρμόζονται εύκολα και οικονομικά είναι οι κατεξοχήν κατάλληλες για τον έλεγχο συστημάτων, στα οποία παρατηρούνται συχνές αλλαγές στον τρόπο λειτουργίας. Ενδεικτικά πεδία εφαρμογής εφαρμογής ευέλικτων συστημάτων υποστήριξης λήψης αποφάσεων με μερική μάθηση είναι: η επίβλεψη γραμμών παραγωγής, η επιτήρηση θαλάσσιων συνόρων, η φροντίδα ηλικιωμένων, η εκτίμηση χρηματοπιστωτικού κινδύνου, ο έλεγχος για δομικές ατέλειες και η διαφύλαξη της πολιτιστικής κληρονομιάς.


2021 ◽  
Vol 11 (2) ◽  
pp. 38-52
Author(s):  
Abhinav Juneja ◽  
Sapna Juneja ◽  
Sehajpreet Kaur ◽  
Vivek Kumar

Diabetes has become one of the common health issues in people of all age groups. The disease is responsible for many difficulties in lifestyle and is represented by imbalance in hyperglycemia. If kept untreated, diabetes can raise the chance of heart attack, diabetic nephropathy, and other disorders. Early diagnosis of diabetes helps to maintain a healthy lifestyle. Machine learning is a capability of machine to learn from past pattern and occurrences and converge with experience to optimise and give decision. In the current research, the authors have employed machine learning techniques and used multi-criteria decision-making approach in Pima Indian diabetes dataset. To classify the patients, they examined several different supervised and unsupervised predictive models. After detailed analysis, it has been observed that the supervised learning algorithms outweigh the unsupervised algorithms due to the output class being a nominal classified domain.


2021 ◽  
Author(s):  
Serkan Varol ◽  
Serkan Catma ◽  
Diana Reindl ◽  
Elizabeth Serieux

BACKGROUND Vaccine refusal still poses a risk to reaching herd immunity in the United States. The existing literature focuses on identifying the predictors that would impact the willingness to accept (WTA) vaccines using survey data. These variables range from the socio-demographic characteristics of the participants to the perceptions and attitudes towards the vaccines so each variable’s statistical relationship with the WTA a vaccine can be investigated. However, while the results of these studies may have important implications for understanding vaccine hesitancy by offering interpretation of the statistical relationships, the prediction of vaccine decision-making has rarely been investigated OBJECTIVE We aimed to identify the factors that contribute to the prediction of COVID-19 vaccine acceptors and refusers using machine learning METHODS A nationwide survey was administered online in November, 2020 to assess American public perceptions and attitudes towards COVID-19 vaccines. Seven machine learning techniques were utilized to identify the model with the highest predictive power. Moreover, a set of variables that would contribute the most to the predictions of vaccine acceptors and refusers was identified using Gini importance based on Random Forest structure RESULTS The resulting machine learning algorithm has better prediction ability for willingness to accept (82%) versus reject (51%) a COVID-19 vaccine. In terms of predictive success, the Random Forest model outperformed the other machine learning techniques with a 69.52% accuracy rate. Worrying about (re) contracting Covid 19 and opinions regarding mandatory face covering were identified as the most important predictors of vaccine decision-making CONCLUSIONS The complexity of vaccine hesitancy needs to be investigated thoroughly before the threshold needed to reach population immunity can be achieved. Predictive analytics can help the public health officials design and deliver individually tailored vaccination programs that would increase the overall vaccine uptake.


Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 170 ◽  
Author(s):  
Zhixi Li ◽  
Vincent Tam

Momentum and reversal effects are important phenomena in stock markets. In academia, relevant studies have been conducted for years. Researchers have attempted to analyze these phenomena using statistical methods and to give some plausible explanations. However, those explanations are sometimes unconvincing. Furthermore, it is very difficult to transfer the findings of these studies to real-world investment trading strategies due to the lack of predictive ability. This paper represents the first attempt to adopt machine learning techniques for investigating the momentum and reversal effects occurring in any stock market. In the study, various machine learning techniques, including the Decision Tree (DT), Support Vector Machine (SVM), Multilayer Perceptron Neural Network (MLP), and Long Short-Term Memory Neural Network (LSTM) were explored and compared carefully. Several models built on these machine learning approaches were used to predict the momentum or reversal effect on the stock market of mainland China, thus allowing investors to build corresponding trading strategies. The experimental results demonstrated that these machine learning approaches, especially the SVM, are beneficial for capturing the relevant momentum and reversal effects, and possibly building profitable trading strategies. Moreover, we propose the corresponding trading strategies in terms of market states to acquire the best investment returns.


2020 ◽  
Vol 13 (1) ◽  
pp. 130-149
Author(s):  
Puneet Misra ◽  
Siddharth Chaurasia

Stock market movements are affected by numerous factors making it one of the most challenging problems for forecasting. This article attempts to predict the direction of movement of stock and stock indices. The study uses three classifiers - Artificial Neural Network, Random Forest and Support Vector Machine with four different representation of inputs. First representation uses raw data (open, high, low, close and volume), The second uses ten features in the form of technical indicators generated by use of technical analysis. The third and fourth portrayal presents two different ways of converting the indicator data into discrete trend data. Experimental results suggest that for raw data support vector machine provides the best results. For other representations, there is no clear winner regarding models applied, but portrayal of data by the proposed approach gave best overall results for all the models and financial series. Consistency of the results highlight the importance of feature generation and right representation of dataset to machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document