Robust face recognition based on a new Kernel-PCA using RRQR factorization

2021 ◽  
Vol 25 (5) ◽  
pp. 1233-1245
Author(s):  
Ayyad Maafiri ◽  
Khalid Chougdali

In the last ten years, many variants of the principal component analysis were suggested to fight against the curse of dimensionality. Recently, A. Sharma et al. have proposed a stable numerical algorithm based on Householder QR decomposition (HQR) called QR PCA. This approach improves the performance of the PCA algorithm via a singular value decomposition (SVD) in terms of computation complexity. In this paper, we propose a new algorithm called RRQR PCA in order to enhance the QR PCA performance by exploiting the Rank-Revealing QR Factorization (RRQR). We have also improved the recognition rate of RRQR PCA by developing a nonlinear extension of RRQR PCA. In addition, a new robust RBF Lp-norm kernel is proposed in order to reduce the effect of outliers and noises. Extensive experiments on two well-known standard face databases which are ORL and FERET prove that the proposed algorithm is more robust than conventional PCA, 2DPCA, PCA-L1, WTPCA-L1, LDA, and 2DLDA in terms of face recognition accuracy.

Author(s):  
Jiadi Li ◽  
Zhenxue Chen ◽  
Chengyun Liu

A novel method is proposed in this paper to improve the recognition accuracy of Local Binary Pattern (LBP) on low-resolution face recognition. More precise descriptors and effectively face features can be extracted by combining multi-scale blocking center symmetric local binary pattern (CS-LBP) based on Gaussian pyramids and weighted principal component analysis (PCA) on low-resolution condition. Firstly, the features statistical histograms of face images are calculated by multi-scale blocking CS-LBP operator. Secondly, the stronger classification and lower dimension features can be got by applying weighted PCA algorithm. Finally, the different classifiers are used to select the optimal classification categories of low-resolution face set and calculate the recognition rate. The results in the ORL human face databases show that recognition rate can get 89.38% when the resolution of face image drops to 12[Formula: see text]10 pixel and basically satisfy the practical requirements of recognition. The further comparison of other descriptors and experiments from videos proved that the novel algorithm can improve recognition accuracy.


Face recognition accuracy is determined by face detection results. Detected faces will be in view of clear and occlusion faces. If detected face has occlusion than recognition accuracy is reduced. This research is directed to increase recognition rate when detected occlusion face. In this paper is proposed normalization occlusion faces by Principal component analysis algorithm. After applying normalization method in occlusion faces false reject error rate is decreased.


Author(s):  
Qingmi Yang

The parameter optimization of Support Vector Machine (SVM) has been a hot research direction. To improve the optimization rate and classification performance of SVM, the Principal Component Analysis (PCA) - Particle Swarm Optimization (PSO) algorithm was used to optimize the penalty parameters and kernel parameters of SVM. PSO which is to find the optimal solution through continuous iteration combined with PCA that eliminates linear redundancy between data, effectively enhance the generalization ability of the model, reduce the optimization time of parameters, and improve the recognition accuracy. The simulation comparison experiments on 6 UCI datasets illustrate that the excellent performance of the PCA-PSO-SVM model. The results show that the proposed algorithm has higher recognition accuracy and better recognition rate than simple PSO algorithm in the parameter optimization of SVM. It is an effective parameter optimization method.


2013 ◽  
Vol 278-280 ◽  
pp. 1211-1214
Author(s):  
Jun Ying Zeng ◽  
Jun Ying Gan ◽  
Yi Kui Zhai

A fast sparse representation face recognition algorithm based on Gabor dictionary and SL0 norm is proposed in this paper. The Gabor filters, which could effectively extract local directional features of the image at multiple scales, are less sensitive to variations of illumination, expression and camouflage. SL0 algorithm, with the advantages of calculation speed,require fewer measurement values by continuously differentiable function approximation L0 norm and reconstructed sparse signal by minimizing the approximate L0 norm. The algorithm obtain the local feature face by extracting the Gabor face feature, reduce the dimensions by principal component analysis, fast sparse classify by the SL0 norm. Under camouflage condition, The algorithm block the Gabor facial feature and improve the speed of formation of the Gabor dictionary. The experimental results on AR face database show that the proposed algorithm can improve recognition speed and recognition rate to some extent and can generalize well to the face recognition, even with a few training image per class.


2014 ◽  
Vol 568-570 ◽  
pp. 668-671
Author(s):  
Yi Long ◽  
Fu Rong Liu ◽  
Guo Qing Qiu

To address the problem that the dimension of the feature vector extracted by Local Binary Pattern (LBP) for face recognition is too high and Principal Component Analysis (PCA) extract features are not the best classification features, an efficient feature extraction method using LBP, PCA and Maximum scatter difference (MSD) has been introduced in this paper. The original face image is firstly divided into sub-images, then the LBP operator is applied to extract the histogram feature. and the feature dimensions are further reduced by using PCA. Finally,MSD is performed on the reduced PCA-based feature.The experimental results on ORL and Yale database demonstrate that the proposed method can classify more effectively and can get higher recognition rate than the traditional recognition methods.


2015 ◽  
Vol 734 ◽  
pp. 562-567 ◽  
Author(s):  
En Zeng Dong ◽  
Yan Hong Fu ◽  
Ji Gang Tong

This paper proposed a theoretically efficient approach for face recognition based on principal component analysis (PCA) and rotation invariant uniform local binary pattern texture features in order to weaken the effects of varying illumination conditions and facial expressions. Firstly, the rotation invariant uniform LBP operator was adopted to extract the local texture feature of the face images. Then PCA method was used to reduce the dimensionality of the extracted feature and get the eigenfaces. Finally, the nearest distance classification was used to distinguish each face. The method has been accessed on Yale and ATR-Jaffe face databases. Results demonstrate that the proposed method is superior to standard PCA and its recognition rate is higher than the traditional PCA. And the proposed algorithm has strong robustness against the illumination changes, pose, rotation and expressions.


Author(s):  
Ting Shan ◽  
Abbas Bigdeli ◽  
Brian C. Lovell ◽  
Shaokang Chen

In this chapter, we propose a pose variability compensation technique, which synthesizes realistic frontal face images from nonfrontal views. It is based on modeling the face via active appearance models and estimating the pose through a correlation model. The proposed technique is coupled with adaptive principal component analysis (APCA), which was previously shown to perform well in the presence of both lighting and expression variations. The proposed recognition techniques, though advanced, are not computationally intensive. So they are quite well suited to the embedded system environment. Indeed, the authors have implemented an early prototype of a face recognition module on a mobile camera phone so the camera can be used to identify the person holding the phone.


2017 ◽  
Vol 14 (1) ◽  
pp. 829-834 ◽  
Author(s):  
Chunwei Tian ◽  
Qi Zhang ◽  
Jian Zhang ◽  
Guanglu Sun ◽  
Yuan Sun

The two-dimensional principal component analysis (2D-PCA) method has been widely applied in fields of image classification, computer vision, signal processing and pattern recognition. The 2D-PCA algorithm also has a satisfactory performance in both theoretical research and real-world applications. It not only retains main information of the original face images, but also decreases the dimension of original face images. In this paper, we integrate the 2D-PCA and spare representation classification (SRC) method to distinguish face images, which has great performance in face recognition. The novel representation of original face image obtained using 2D-PCA is complementary with original face image, so that the fusion of them can obviously improve the accuracy of face recognition. This is also attributed to the fact the features obtained using 2D-PCA are usually more robust than original face image matrices. The experiments of face recognition demonstrate that the combination of original face images and new representations of the original face images is more effective than the only original images. Especially, the simultaneous use of the 2D-PCA method and sparse representation can extremely improve accuracy in image classification. In this paper, the adaptive weighted fusion scheme automatically obtains optimal weights and it has no any parameter. The proposed method is not only simple and easy to achieve, but also obtains high accuracy in face recognition.


Sign in / Sign up

Export Citation Format

Share Document