Oxidative stress and neuroinflammation in Alzheimer's disease and amyotrophic lateral sclerosis: Common links and potential therapeutic targets

2004 ◽  
Vol 6 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Molina Mhatre ◽  
Robert A. Floyd ◽  
Kenneth Hensley
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Satoru Oshiro ◽  
Masaki S. Morioka ◽  
Masataka Kikuchi

Dysregulation of iron metabolism has been observed in patients with neurodegenerative diseases (NDs). Utilization of several importers and exporters for iron transport in brain cells helps maintain iron homeostasis. Dysregulation of iron homeostasis leads to the production of neurotoxic substances and reactive oxygen species, resulting in iron-induced oxidative stress. In Alzheimer's disease (AD) and Parkinson's disease (PD), circumstantial evidence has shown that dysregulation of brain iron homeostasis leads to abnormal iron accumulation. Several genetic studies have revealed mutations in genes associated with increased iron uptake, increased oxidative stress, and an altered inflammatory response in amyotrophic lateral sclerosis (ALS). Here, we review the recent findings on brain iron metabolism in common NDs, such as AD, PD, and ALS. We also summarize the conventional and novel types of iron chelators, which can successfully decrease excess iron accumulation in brain lesions. For example, iron-chelating drugs have neuroprotective effects, preventing neural apoptosis, and activate cellular protective pathways against oxidative stress. Glial cells also protect neurons by secreting antioxidants and antiapoptotic substances. These new findings of experimental and clinical studies may provide a scientific foundation for advances in drug development for NDs.


2019 ◽  
Vol 10 (2) ◽  
pp. 470 ◽  
Author(s):  
Ashok K. Shetty ◽  
Raghavendra Upadhya ◽  
Leelavathi N. Madhu ◽  
Maheedhar Kodali

Sign in / Sign up

Export Citation Format

Share Document