scholarly journals Sex Differences of Brain Functional Topography Revealed in Normal Aging and Alzheimer’s Disease Cohort

2021 ◽  
Vol 80 (3) ◽  
pp. 979-984
Author(s):  
Filippo Cieri ◽  
Zhengshi Yang ◽  
Dietmar Cordes ◽  
Jessica Z.K. Caldwell ◽  

We applied graph theory analysis on resting-state functional magnetic resonance imaging data to evaluate sex differences of brain functional topography in normal controls (NCs), early mild cognitive impairment (eMCI), and AD patients. These metrics were correlated with RAVLT verbal learning and memory scores. The results show NCs have better functional connectivity (FC) metrics than eMCI and AD, and NC women show worse FC metrics compared to men, despite performing better on the RAVLT. FC differences between men and women diminished in eMCI and disappeared in AD. Within women, better FC metrics relate to better RAVLT learning in NCs and eMCI groups.

2014 ◽  
Vol 34 (4) ◽  
pp. 597-605 ◽  
Author(s):  
Caihong Wang ◽  
Wen Qin ◽  
Jing Zhang ◽  
Tian Tian ◽  
Ying Li ◽  
...  

This study aimed to investigate the changes in functional connectivity (FC) within each resting-state network (RSN) and between RSNs in subcortical stroke patients who were well recovered in global motor function. Eleven meaningful RSNs were identified via functional magnetic resonance imaging data from 25 subcortical stroke patients and 22 normal controls using independent component analysis. Compared with normal controls, stroke patients exhibited increased intranetwork FC in the sensorimotor (SMN), visual (VN), auditory (AN), dorsal attention (DAN), and default mode (DMN) networks; they also exhibited decreased intranetwork FC in the frontoparietal network (FPN) and anterior DMN. Stroke patients displayed a shift from no FC in controls to negative internetwork FC between the VN and AN as well as between the VN and SMN. Stroke patients also exhibited weakened positive (anterior and posterior DMN; posterior DMN and right FPN) or negative (AN and right FPN; posterior DMN and dorsal SMN) internetwork FC when compared with normal controls. We suggest that subcortical stroke may induce connectivity changes in multiple functional networks, affecting not only the intranetwork FC within RSNs but also the internetwork FC between these RSNs.


Sign in / Sign up

Export Citation Format

Share Document