Power quality disturbance analysis using data-driven EMD-SVM hybrid approach

2021 ◽  
pp. 1-10
Author(s):  
Hasmat Malik ◽  
Abdulaziz Almutairi ◽  
Majed A. Alotaibi

In the modern electrical power system network (EPSN), the power quality disturbances (PSDs) are the serious issue for the power engineer to maintain the uninterrupted and reliable power supply. Generally, PQDs are generated due to non-linear loading condition, perturb loading and other occurrences such as transient, harmonics, sag, swell and interruptions. These problems of PQDs effect the power demand mapping problem, which effect the reliability and stability of the EPSN operating condition. In this study, a novel approach for PQDs diagnosis (PQDD) is proposed, which includes real-time data generation, data pre-processing, feature extraction, feature selection, intelligent model development for PQDD. Data decomposition approach of EMD is utilized to generate the feature vector of IMFs. These features are utilized as an input variable to the intelligent classifiers. In this study PQDD is analyzed based on SVM method and obtained results are compared with conventional AI method of LVQ-NN. The results represent the higher acceptability of the proposed approach with diagnosis accuracy of 99.98% (training phase), 93.11% (testing phase) for SVM and 92.56% (training phase) and 91.0% (testing phase) for LVQ-NN based PQDD method.

Author(s):  
Okan Ozgonenel ◽  
◽  
Kubra Nur Akpinar ◽  

Electrical power systems are expected to transmit continuously nominal rated sinusoidal voltage and current to consumers. However, the widespread use of power electronics has brought power quality problems. This study performs classification of power quality disturbances using an artificial neural network (ANN). The most appropriate ANN structure was determined using the Box-Behnken experimental design method. Nine types of disturbance (no fault, voltage sag, voltage, swell, flicker, harmonics, transient, DC component, electromagnetic interference, instant interruption) were investigated in computer simulations. The feature vectors used in the identification of the different types of disturbances were produced using the discrete wavelet transform and principal component analysis. Our results show that the optimized feed forward multilayer ANN structure successfully distinguishes power quality disturbances in simulation data and was also able to identify these disturbances in real time data from substations.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2699
Author(s):  
Marceli N. Gonçalves ◽  
Marcelo M. Werneck

Optical Current Transformers (OCTs) and Optical Voltage Transformers (OVTs) are an alternative to the conventional transformers for protection and metering purposes with a much smaller footprint and weight. Their advantages were widely discussed in scientific and technical literature and commercial applications based on the well-known Faraday and Pockels effect. However, the literature is still scarce in studies evaluating the use of optical transformers for power quality purposes, an important issue of power system designed to analyze the various phenomena that cause power quality disturbances. In this paper, we constructed a temperature-independent prototype of an optical voltage transformer based on fiber Bragg grating (FBG) and piezoelectric ceramics (PZT), adequate to be used in field surveys at 13.8 kV distribution lines. The OVT was tested under several disturbances defined in IEEE standards that can occur in the electrical power system, especially short-duration voltage variations such as SAG, SWELL, and INTERRUPTION. The results demonstrated that the proposed OVT presents a dynamic response capable of satisfactorily measuring such disturbances and that it can be used as a power quality monitor for a 13.8 kV distribution system. Test on the proposed system concluded that it was capable to reproduce up to the 41st harmonic without significative distortion and impulsive surges up to 2.5 kHz. As an advantage, when compared with conventional systems to monitor power quality, the prototype can be remote-monitored, and therefore, be installed at strategic locations on distribution lines to be monitored kilometers away, without the need to be electrically powered.


Author(s):  
Jaya Bharata Reddy ◽  
Dusmanta Kumar Mohanta ◽  
B.M. Karan

Power quality issues have been a source of major concern in recent years due to extensive use of power electronic devices and non-linear loads in electrical power system and consequently sensitive detection and accurate classification of power disturbances have become very much necessary. To monitor electrical power quality disturbances, short time discrete Fourier transform (STFT) is most often used. But for non- stationary signals, the STFT does not track the signal dynamics properly due to the limitations of a fixed window width chosen a priori. This paper presents a new approach for power quality analysis using a modified wavelet transform, known as S–transform and the analysis of several power quality problems using both S–transform as well as discrete wavelet transform validates the superiority of S–transform.


Author(s):  
Ashutosh Srivastava ◽  
Amarjeet Singh

Harmonics in the power system is not new issue. This phenomenon has been introduced by technocrat throughout in the history of electrical power system. Maintaining the power quality in a power system is an essential assignment due to increase in wide variety of non-linear loads. The current drawn by such non linear loads are non-sinusoidal and therefore contains harmonics. Therefore, it becomes necessary to compensate these unwanted harmonics for better performance of the system. In this paper, a review of compensations of harmonics in distribution system has been explained.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2587
Author(s):  
Muhammad Abdullah ◽  
Tahir N. Malik ◽  
Ali Ahmed ◽  
Muhammad F. Nadeem ◽  
Irfan A. Khan ◽  
...  

The power quality of the Electrical Power System (EPS) is greatly affected by electrical harmonics. Hence, accurate and proper estimation of electrical harmonics is essential to design appropriate filters for mitigation of harmonics and their associated effects on the power quality of EPS. This paper presents a novel statistical (Least Square) and meta-heuristic (Grey wolf optimizer) based hybrid technique for accurate detection and estimation of electrical harmonics with minimum computational time. The non-linear part (phase and frequency) of harmonics is estimated using GWO, while the linear part (amplitude) is estimated using the LS method. Furthermore, harmonics having transients are also estimated using proposed harmonic estimators. The effectiveness of the proposed harmonic estimator is evaluated using various case studies. Comparing the proposed approach with other harmonic estimation techniques demonstrates that it has a minimum mean square error with less complexity and better computational efficiency.


2017 ◽  
Vol 2 (4) ◽  
pp. 227 ◽  
Author(s):  
Amam Hossain Bagdadee

Characteristics of Power quality has been with us since the inception of the electrical Power system. However, the topic of power quality has attracted particular attention in recent years due to the increase of electronically controlled. Power quality problems caused disruptions to electrical or electronic equipment and the resulting consequences are very expensive. Ripple techniques will be studied in this paper for analysing power quality monitoring. In the case study based on the measurement of the site of the Asian Institute of Technology (AIT) and it was examined using the proposed ripple technique.


2019 ◽  
Vol 63 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Michał Jasiński ◽  
Jacek Rezmer ◽  
Tomasz Sikorski ◽  
Jarosław Szymańda

The aim of the paper is to present possible using of monitoring systems associated with photovoltaic systems (PV) in point of its integration with electrical power system (EPS). Presented investigations is a case study of 15 kW Scientific Photovoltaic System. The paper contains a description of applied control and monitoring systems including monitoring of PV panels parameters, weather condition, PV DC/AC inverters as well as special monitoring systems dedicated to power quality (PQ) and shape of voltage and current. The aim of the paper is to exhibit a possibility to combine different monitoring systems of the PV in order to improve evaluation of integration of PV with EPS. Presented example contains selected elements of power quality assessment, power and energy production, weather conditions for selected period of PV system working time.


Sign in / Sign up

Export Citation Format

Share Document