Construction of Cryptographically Secure AES S-Box using Second-order Reversible Cellular Automata

2020 ◽  
Vol 39 (3) ◽  
pp. 4313-4318
Author(s):  
A. Anjalin Sweatha ◽  
K. Mohaideen Pitchai

In cryptography the block ciphers are the mostly used symmetric algorithms. In the existing system the standard S-Box of Advanced Encryption Standard(AES) is performed using the irreducible polynomial equation in table form known as look-up tables(LUTs). For more security purposes, second-order reversible cellular automata based S-box is created. The security aspects of the S-Box used in the AES algorithm are evaluated using cryptographic properties like Strict Avalanche Criteria, Non-Linearity, Entropy, and Common Immunity Bias. The design of S-Box using second-order reversible Cellular Automata is better concerning security and dynamic aspect as compared to the classical S-boxes used Advanced Encryption Standard.

Author(s):  
Kamel Mohammed Faraoun

This paper proposes a semantically secure construction of pseudo-random permutations using second-order reversible cellular automata. We show that the proposed construction is equivalent to the Luby-Rackoff model if it is built using non-uniform transition rules, and we prove that the construction is strongly secure if an adequate number of iterations is performed. Moreover, a corresponding symmetric block cipher is constructed and analysed experimentally in comparison with popular ciphers. Obtained results approve robustness and efficacy of the construction, while achieved performances overcome those of some existing block ciphers.


2022 ◽  
Author(s):  
Shan Suthaharan

This paper presents a computational framework that helps enhance the confidentiality protection of communication in cybersecurity by leveraging the scientific properties of the Tamil language and the advanced encryption standard (AES). It defines a product set of vowels and consonants sounds of the Tamil language and reveals its connection to Hardy-Ramanujan prime factors and Tamil letters as a one-to-one function. It also reveals that the letters of the Tamil alphabet, combined with the digits from 1 to 9, form a Galois field of 2^8 over an irreducible polynomial of degree 8. In addition, it implements these two mathematical properties and builds an encoder for the AES algorithm to transform the Tamil texts to their hexadecimal states, and replace the pre-round transformation module of AES. It empirically shows that the Tamil-based encoder enhances the cryptographic strength of the AES algorithm at every step of its encryption flow. The cryptographic strength is measured by the runs test scores of the bit sequences of the ciphers of AES and compared with that of the English language. This modeling and simulation approach concludes that the Tamil-based encryption enhances the cryptographic strength of AES than English-based encryption.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Alexander DeTrano ◽  
Naghmeh Karimi ◽  
Ramesh Karri ◽  
Xiaofei Guo ◽  
Claude Carlet ◽  
...  

Masking countermeasures, used to thwart side-channel attacks, have been shown to be vulnerable to mask-extraction attacks. State-of-the-art mask-extraction attacks on the Advanced Encryption Standard (AES) algorithm target S-Box recomputation schemes but have not been applied to scenarios where S-Boxes are precomputed offline. We propose an attack targeting precomputed S-Boxes stored in nonvolatile memory. Our attack targets AES implemented in software protected by a low entropy masking scheme and recovers the masks with 91% success rate. Recovering the secret key requires fewer power traces (in fact, by at least two orders of magnitude) compared to a classical second-order attack. Moreover, we show that this attack remains viable in a noisy environment or with a reduced number of leakage points. Eventually, we specify a method to enhance the countermeasure by selecting a suitable coset of the masks set.


Complexity ◽  
2014 ◽  
Vol 20 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Ramón Alonso-Sanz

Sign in / Sign up

Export Citation Format

Share Document