Filtration network: A frame sampling strategy via deep reinforcement learning for video captioning

2021 ◽  
pp. 1-13
Author(s):  
Tiancheng Qian ◽  
Xue Mei ◽  
Pengxiang Xu ◽  
Kangqi Ge ◽  
Zhelei Qi

Recently many methods use encoder-decoder framework for video captioning, aiming to translate short videos into natural language. These methods usually use equal interval frame sampling. However, lacking a good efficiency in sampling, it has a high temporal and spatial redundancy, resulting in unnecessary computation cost. In addition, the existing approaches simply splice different visual features on the fully connection layer. Therefore, features cannot be effectively utilized. In order to solve the defects, we proposed filtration network (FN) to select key frames, which is trained by deep reinforcement learning algorithm actor-double-critic. According to behavior psychology, the core idea of actor-double-critic is that the behavior of agent is determined by both the external environment and the internal personality. It avoids the phenomenon of unclear reward and sparse feedback in training because it gives steady feedback after each action. The key frames are sent to combine codec network (CCN) to generate sentences. The operation of feature combination in CCN make fusion of visual features by complex number representation to make good semantic modeling. Experiments and comparisons with other methods on two datasets (MSVD/MSR-VTT) show that our approach achieves better performance in terms of four metrics, BLEU-4, METEOR, ROUGE-L and CIDEr.

Author(s):  
Xingxing Liang ◽  
Li Chen ◽  
Yanghe Feng ◽  
Zhong Liu ◽  
Yang Ma ◽  
...  

Reinforcement learning, as an effective method to solve complex sequential decision-making problems, plays an important role in areas such as intelligent decision-making and behavioral cognition. It is well known that the sample experience replay mechanism contributes to the development of current deep reinforcement learning by reusing past samples to improve the efficiency of samples. However, the existing priority experience replay mechanism changes the sample distribution in the sample set due to the higher sampling frequency assigned to a specific transition, and it cannot be applied to actor-critic and other on-policy reinforcement learning algorithm. To address this, we propose an adaptive factor based on TD-error, which further increases sample utilization by giving more attention weight to samples of larger TD-error, and embeds it flexibly into the original Deep Q Network and Advantage Actor-Critic algorithm to improve their performance. Then we carried out the performance evaluation for the proposed architecture in the context of CartPole-V1 and 6 environments of Atari game experiments, respectively, and the obtained results either on the conditions of fixed temperature or annealing temperature, when compared to those produced by the vanilla DQN and original A2C, highlight the advantages in cumulative rewards and climb speed of the improved algorithms.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 471
Author(s):  
Jai Hoon Park ◽  
Kang Hoon Lee

Designing novel robots that can cope with a specific task is a challenging problem because of the enormous design space that involves both morphological structures and control mechanisms. To this end, we present a computational method for automating the design of modular robots. Our method employs a genetic algorithm to evolve robotic structures as an outer optimization, and it applies a reinforcement learning algorithm to each candidate structure to train its behavior and evaluate its potential learning ability as an inner optimization. The size of the design space is reduced significantly by evolving only the robotic structure and by performing behavioral optimization using a separate training algorithm compared to that when both the structure and behavior are evolved simultaneously. Mutual dependence between evolution and learning is achieved by regarding the mean cumulative rewards of a candidate structure in the reinforcement learning as its fitness in the genetic algorithm. Therefore, our method searches for prospective robotic structures that can potentially lead to near-optimal behaviors if trained sufficiently. We demonstrate the usefulness of our method through several effective design results that were automatically generated in the process of experimenting with actual modular robotics kit.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Peter Morales ◽  
Rajmonda Sulo Caceres ◽  
Tina Eliassi-Rad

AbstractComplex networks are often either too large for full exploration, partially accessible, or partially observed. Downstream learning tasks on these incomplete networks can produce low quality results. In addition, reducing the incompleteness of the network can be costly and nontrivial. As a result, network discovery algorithms optimized for specific downstream learning tasks given resource collection constraints are of great interest. In this paper, we formulate the task-specific network discovery problem as a sequential decision-making problem. Our downstream task is selective harvesting, the optimal collection of vertices with a particular attribute. We propose a framework, called network actor critic (NAC), which learns a policy and notion of future reward in an offline setting via a deep reinforcement learning algorithm. The NAC paradigm utilizes a task-specific network embedding to reduce the state space complexity. A detailed comparative analysis of popular network embeddings is presented with respect to their role in supporting offline planning. Furthermore, a quantitative study is presented on various synthetic and real benchmarks using NAC and several baselines. We show that offline models of reward and network discovery policies lead to significantly improved performance when compared to competitive online discovery algorithms. Finally, we outline learning regimes where planning is critical in addressing sparse and changing reward signals.


Sign in / Sign up

Export Citation Format

Share Document