scholarly journals Ideal ratio mask estimation using supervised DNN approach for target speech signal enhancement

2021 ◽  
pp. 1-15
Author(s):  
Poovarasan Selvaraj ◽  
E. Chandra

The most challenging process in recent Speech Enhancement (SE) systems is to exclude the non-stationary noises and additive white Gaussian noise in real-time applications. Several SE techniques suggested were not successful in real-time scenarios to eliminate noises in the speech signals due to the high utilization of resources. So, a Sliding Window Empirical Mode Decomposition including a Variant of Variational Model Decomposition and Hurst (SWEMD-VVMDH) technique was developed for minimizing the difficulty in real-time applications. But this is the statistical framework that takes a long time for computations. Hence in this article, this SWEMD-VVMDH technique is extended using Deep Neural Network (DNN) that learns the decomposed speech signals via SWEMD-VVMDH efficiently to achieve SE. At first, the noisy speech signals are decomposed into Intrinsic Mode Functions (IMFs) by the SWEMD Hurst (SWEMDH) technique. Then, the Time-Delay Estimation (TDE)-based VVMD was performed on the IMFs to elect the most relevant IMFs according to the Hurst exponent and lessen the low- as well as high-frequency noise elements in the speech signal. For each signal frame, the target features are chosen and fed to the DNN that learns these features to estimate the Ideal Ratio Mask (IRM) in a supervised manner. The abilities of DNN are enhanced for the categories of background noise, and the Signal-to-Noise Ratio (SNR) of the speech signals. Also, the noise category dimension and the SNR dimension are chosen for training and testing manifold DNNs since these are dimensions often taken into account for the SE systems. Further, the IRM in each frequency channel for all noisy signal samples is concatenated to reconstruct the noiseless speech signal. At last, the experimental outcomes exhibit considerable improvement in SE under different categories of noises.

2021 ◽  
Author(s):  
Poovarasan Selvaraj ◽  
Chandra Eswaran

Abstract The most challenging process in recent Speech Enhancement (SE) systems is to exclude the non-stationary noises and additive white Gaussian noise in real-time applications. Several SE techniques suggested were not successful in real-time scenarios to eliminate noises in the speech signals due to the high utilization of resources. So, a Sliding Window Empirical Mode Decomposition including a Variant of Variational Model Decomposition and Hurst (SWEMD-VVMDH) technique was developed for minimizing the difficulty in real-time applications. But, this is the statistical framework that takes a long time for computations. Hence in this article, this SWEMD-VVMDH technique is extended using Deep Neural Network (DNN) that learns the decomposed speech signals via SWEMD-VVMDH efficiently to achieve SE. At first, the noisy speech signals are decomposed into Intrinsic Mode Functions (IMFs) by the SWEMD Hurst (SWEMDH) technique. Then, the Time-Delay Estimation (TDE)-based VVMD was performed on the IMFs to elect the most relevant IMFs according to the Hurst exponent and lessen the low- as well as high-frequency noise elements in the speech signal. For each signal frame, the target features are chosen and fed to the DNN that learns these features to estimate the Ideal Ratio Mask (IRM) in a supervised manner. The abilities of DNN are enhanced for the categories of background noise, and the Signal-to-Noise Ratio (SNR) of the speech signals. Also, the noise category dimension and the SNR dimension are chosen for training and testing manifold DNNs since these are dimensions often taken into account for the SE systems. Further, the IRM in each frequency channel for all noisy signal samples is concatenated to reconstruct the noiseless speech signal. At last, the experimental outcomes exhibit considerable improvement in SE under different categories of noises.


Author(s):  
Ehab AbdulRazzaq Hussein ◽  
Murtadha K. Khashan ◽  
Ameer K. Jawad

It is known that increasing the security of the information and reducing the noise effect through public channels are two of the main priorities in developing any communication system. In this article, an efficient, secure communication system with two levels of encryption has been applied to the speech signal. The suggested security approach was implemented by using two different stages of chaotic masking on the signal; one masking was conducted by using Lorenz system and the other masking was built by using Rӧssler chaotic flow system. The main goal of developing this two-chaotic masking approach is to increase the key space and the security of the information. Also, an immunity technique has been implemented in the suggested approach to reduce the noise effect. For practical application purposes, this system was tested with additive white gaussian noise (AWGN) channel. The simulation results show that the quality of reconstructed speech signal is changeable according to the used signal to noise ratio (SNR); therefore, a proposed technique based on digital processing method (DPM) was applied to the first masked signal by converting the sampled data from the analog to the binary format. The simulation results show that an 22 dB (SNR) is sufficient to recover the speech signal with minimum noise by using the suggested approach.


1989 ◽  
Author(s):  
Insup Lee ◽  
Susan Davidson ◽  
Victor Wolfe

Author(s):  
Mourad Talbi ◽  
Med Salim Bouhlel

Background: In this paper, we propose a secure image watermarking technique which is applied to grayscale and color images. It consists in applying the SVD (Singular Value Decomposition) in the Lifting Wavelet Transform domain for embedding a speech image (the watermark) into the host image. Methods: It also uses signature in the embedding and extraction steps. Its performance is justified by the computation of PSNR (Pick Signal to Noise Ratio), SSIM (Structural Similarity), SNR (Signal to Noise Ratio), SegSNR (Segmental SNR) and PESQ (Perceptual Evaluation Speech Quality). Results: The PSNR and SSIM are used for evaluating the perceptual quality of the watermarked image compared to the original image. The SNR, SegSNR and PESQ are used for evaluating the perceptual quality of the reconstructed or extracted speech signal compared to the original speech signal. Conclusion: The Results obtained from computation of PSNR, SSIM, SNR, SegSNR and PESQ show the performance of the proposed technique.


Author(s):  
Mohsen Ansari ◽  
Amir Yeganeh-Khaksar ◽  
Sepideh Safari ◽  
Alireza Ejlali

Author(s):  
R.K. Clark ◽  
I.B. Greenberg ◽  
P.K. Boucher ◽  
T.F. Lunt ◽  
P.G. Neumann ◽  
...  

Data ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ahmed Elmogy ◽  
Hamada Rizk ◽  
Amany M. Sarhan

In data mining, outlier detection is a major challenge as it has an important role in many applications such as medical data, image processing, fraud detection, intrusion detection, and so forth. An extensive variety of clustering based approaches have been developed to detect outliers. However they are by nature time consuming which restrict their utilization with real-time applications. Furthermore, outlier detection requests are handled one at a time, which means that each request is initiated individually with a particular set of parameters. In this paper, the first clustering based outlier detection framework, (On the Fly Clustering Based Outlier Detection (OFCOD)) is presented. OFCOD enables analysts to effectively find out outliers on time with request even within huge datasets. The proposed framework has been tested and evaluated using two real world datasets with different features and applications; one with 699 records, and another with five millions records. The experimental results show that the performance of the proposed framework outperforms other existing approaches while considering several evaluation metrics.


Sign in / Sign up

Export Citation Format

Share Document