scholarly journals The reliability of the CODA motion analysis system for lumbar spine analysis: a pilot study

2010 ◽  
Vol 31 (1) ◽  
pp. 16-22 ◽  
Author(s):  
K O'Sullivan ◽  
A Clifford ◽  
L Hughes
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Takasuke Miyazaki ◽  
Masayuki Kawada ◽  
Yuki Nakai ◽  
Ryoji Kiyama ◽  
Kazunori Yone

Propulsion force and trailing limb angle (TLA) are meaningful indicators for evaluating quality of gait. This study examined the validity of measurement for TLA and propulsion force during various gait conditions using magnetic inertial measurement units (IMU), based on measurements using a three-dimensional motion analysis system and a force platform. Eighteen healthy males (mean age 25.2  ±  3.2 years, body height 1.70   ±  0.06 m) walked with and without trunk fluctuation at preferred, slow, and fast velocities. IMU were fixed on the thorax, lumbar spine, and right thigh and shank. IMU calculated the acceleration and tilt angles in a global coordinate system. TLA, consisting of a line connecting the hip joint with the ankle joint, and the laboratory’s vertical axis at late stance in the sagittal plane, was calculated from thigh and shank segment angles obtained by IMU, and coordinate data from the motion analysis system. Propulsion force was estimated by the increment of velocity calculated from anterior acceleration measured by IMU fixed on the thorax and lumbar spine, and normalized impulse of the anterior component of ground reaction force (AGRF) during late stance. Similarity of TLA measured by IMU and the motion analysis system was tested by the coefficient of multiple correlation (CMC), intraclass correlation coefficient (ICC), and root mean square (RMS) of measurement error. Relationships between normalized impulse of AGRF and increments of velocity, as measured by IMU, were tested using correlation analysis. CMC of TLA was 0.956–0.959. ICC between peak TLAs was 0.831–0.876 (p<0.001), and RMS of error was 1.42°–1.92°. Velocity increment calculated from acceleration on the lumbar region showed strong correlations with normalized impulse of AGRF (r=0.755–0.892, p<0.001). These results indicated a high validity of estimation of TLA and propulsion force by IMU during various gait conditions; these methods would be useful for best clinical practice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Maurer-Grubinger ◽  
J. Haenel ◽  
L. Fraeulin ◽  
F. Holzgreve ◽  
E. M. Wanke ◽  
...  

AbstractMusculoskeletal disorders of the trunk and neck are common among cleaners. Vacuum cleaning is a demanding activity. The aim of this study was to present the movement profile of the trunk and neck during habitual vacuuming. The data were collected from 31 subjects (21f./10 m) using a 3D motion analysis system (Xsens). 10 cycles were analysed in vacuuming PVC and carpet floors with 8 vacuum cleaners. The joint angles and velocities were represented statistically descriptive. When vacuuming, the trunk is held in a forwardly inclined position by a flexion in the hip and rotated from this position. In the joint angles and velocities of the spine, the rotation proved to be dominant. A relatively large amount of movement took place in the cervical spine and also in the lumbar spine. The shown movement profile is rather a comfort area of vacuuming which may serve as a reference for ergonomics in vacuuming.


2021 ◽  
pp. 1-14
Author(s):  
Rixu Liu ◽  
Dongyang Qian ◽  
Yushu Chen ◽  
Jianyu Zou ◽  
Shicong Zheng ◽  
...  

Sensors ◽  
2010 ◽  
Vol 10 (12) ◽  
pp. 10733-10751 ◽  
Author(s):  
Rodrigo Pérez ◽  
Úrsula Costa ◽  
Marc Torrent ◽  
Javier Solana ◽  
Eloy Opisso ◽  
...  

2018 ◽  
Vol 13 (4) ◽  
Author(s):  
Pui Wa Fung ◽  
Kam Ming Mok ◽  
Ruen Shan Leow ◽  
Sai Chuen Fu ◽  
Patrick Shu Hang Yung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document