scholarly journals Q QUANTITATIVE METHOD OF CALCULATING APPROACHES OF EXERCISES ON THE BASIS OF OUTPUT SIGNAL OF THE NEURAL NETWORK

Author(s):  
Juliy Broyda

Today, artificial intelligence and computer vision systems are developing rapidly in the world; in particular, new architectures of neural networks that assess the three-dimensional human posture on video are produced. Such neural networks require analysis of their output signal in order to obtain useful data for the end user and their subsequent integration into user systems. The author proposes a new method of analysis of the output signal of the neural network, which estimates the position of a person in space that performs the calculation of repetitions of the exercise "squat". This method is based on the state machine, which adds one to the repetition counter at the end of the exercise cycle. The application of this method in the initial stages of the algorithm of exercise analysis will allow further development of systems that test squats and help athletes and coaches during training, as well as scientists in the field of biomechanics during their professional activities. A distinctive feature of this method is resistance to both input signal emissions, i.e. incorrect results of human posture recognition by the neural network, and to human movements that do not belong to the exercise directly. Also, the application of this method to the analysis of the neural network signal allows to combine the positive qualities inherent in neural networks used in computer vision (admissibility of high variability of clothing and background), and the positive qualities of analytical and algorithmic methods (easy interpretability of results, convenient adjustment, possibility to use the experts' subject experience for the selection of parameters). This method is not specific to any particular neural network and therefore can be used at the output of almost any system that determines the position of human joints in space. In addition to the description of the method, the article presents the results of its tests in different conditions. This test scheme can be used not only to apply this method to the exercise "squat", but to any other cyclic exercise.

2021 ◽  
pp. 1143-1146
Author(s):  
A.V. Lysenko ◽  
◽  
◽  
M.S. Oznobikhin ◽  
E.A. Kireev ◽  
...  

Abstract. This study discusses the problem of phytoplankton classification using computer vision methods and convolutional neural networks. We created a system for automatic object recognition consisting of two parts: analysis and primary processing of phytoplankton images and development of the neural network based on the obtained information about the images. We developed software that can detect particular objects in images from a light microscope. We trained a convolutional neural network in transfer learning and determined optimal parameters of this neural network and the optimal size of using dataset. To increase accuracy for these groups of classes, we created three neural networks with the same structure. The obtained accuracy in the classification of Baikal phytoplankton by these neural networks was up to 80%.


2021 ◽  
Vol 25 (1) ◽  
pp. 140-145
Author(s):  
D.Yu. Klekho ◽  
◽  
E.B. Karelina ◽  
Yu.P. Batyrev ◽  
◽  
...  

The classification and description of the tasks solved using computer vision technologies are given. The use of neural networks to create systems for selecting objects in an image stream is considered in more detail. It also explains what is meant by training a neural network and discusses in detail the main stages of machine learning. The features of the application of convolutional neural networks for the segmentation of image objects, i.e., the selection of objects in the image, are indicated. The choice of the neural network architecture has been made, which has the property of extracting basic information from the image. The characteristics of the segmentation problem and the basic principles of computer vision are given. Conclusions are given on the possible application of the developed neural network model for solving various applied problems.


2018 ◽  
Author(s):  
Edouard A Hay ◽  
Raghuveer Parthasarathy

AbstractThree-dimensional microscopy is increasingly prevalent in biology due to the development of techniques such as multiphoton, spinning disk confocal, and light sheet fluorescence microscopies. These methods enable unprecedented studies of life at the microscale, but bring with them larger and more complex datasets. New image processing techniques are therefore called for to analyze the resulting images in an accurate and efficient manner. Convolutional neural networks are becoming the standard for classification of objects within images due to their accuracy and generalizability compared to traditional techniques. Their application to data derived from 3D imaging, however, is relatively new and has mostly been in areas of magnetic resonance imaging and computer tomography. It remains unclear, for images of discrete cells in variable backgrounds as are commonly encountered in fluorescence microscopy, whether convolutional neural networks provide sufficient performance to warrant their adoption, especially given the challenges of human comprehension of their classification criteria and their requirements of large training datasets. We therefore applied a 3D convolutional neural network to distinguish bacteria and non-bacterial objects in 3D light sheet fluorescence microscopy images of larval zebrafish intestines. We find that the neural network is as accurate as human experts, outperforms random forest and support vector machine classifiers, and generalizes well to a different bacterial species through the use of transfer learning. We also discuss network design considerations, and describe the dependence of accuracy on dataset size and data augmentation. We provide source code, labeled data, and descriptions of our analysis pipeline to facilitate adoption of convolutional neural network analysis for three-dimensional microscopy data.Author summaryThe abundance of complex, three dimensional image datasets in biology calls for new image processing techniques that are both accurate and fast. Deep learning techniques, in particular convolutional neural networks, have achieved unprecedented accuracies and speeds across a large variety of image classification tasks. However, it is unclear whether or not their use is warranted in noisy, heterogeneous 3D microscopy datasets, especially considering their requirements of large, labeled datasets and their lack of comprehensible features. To asses this, we provide a case study, applying convolutional neural networks as well as feature-based methods to light sheet fluorescence microscopy datasets of bacteria in the intestines of larval zebrafish. We find that the neural network is as accurate as human experts, outperforms the feature-based methods, and generalizes well to a different bacterial species through the use of transfer learning.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


Author(s):  
Saša Vasiljević ◽  
Jasna Glišović ◽  
Nadica Stojanović ◽  
Ivan Grujić

According to the World Health Organization, air pollution with PM10 and PM2.5 (PM-particulate matter) is a significant problem that can have serious consequences for human health. Vehicles, as one of the main sources of PM10 and PM2.5 emissions, pollute the air and the environment both by creating particles by burning fuel in the engine, and by wearing of various elements in some vehicle systems. In this paper, the authors conducted the prediction of the formation of PM10 and PM2.5 particles generated by the wear of the braking system using a neural network (Artificial Neural Networks (ANN)). In this case, the neural network model was created based on the generated particles that were measured experimentally, while the validity of the created neural network was checked by means of a comparative analysis of the experimentally measured amount of particles and the prediction results. The experimental results were obtained by testing on an inertial braking dynamometer, where braking was performed in several modes, that is under different braking parameters (simulated vehicle speed, brake system pressure, temperature, braking time, braking torque). During braking, the concentration of PM10 and PM2.5 particles was measured simultaneously. The total of 196 measurements were performed and these data were used for training, validation, and verification of the neural network. When it comes to simulation, a comparison of two types of neural networks was performed with one output and with two outputs. For each type, network training was conducted using three different algorithms of backpropagation methods. For each neural network, a comparison of the obtained experimental and simulation results was performed. More accurate prediction results were obtained by the single-output neural network for both particulate sizes, while the smallest error was found in the case of a trained neural network using the Levenberg-Marquardt backward propagation algorithm. The aim of creating such a prediction model is to prove that by using neural networks it is possible to predict the emission of particles generated by brake wear, which can be further used for modern traffic systems such as traffic control. In addition, this wear algorithm could be applied on other vehicle systems, such as a clutch or tires.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1526 ◽  
Author(s):  
Choongmin Kim ◽  
Jacob A. Abraham ◽  
Woochul Kang ◽  
Jaeyong Chung

Crossbar-based neuromorphic computing to accelerate neural networks is a popular alternative to conventional von Neumann computing systems. It is also referred as processing-in-memory and in-situ analog computing. The crossbars have a fixed number of synapses per neuron and it is necessary to decompose neurons to map networks onto the crossbars. This paper proposes the k-spare decomposition algorithm that can trade off the predictive performance against the neuron usage during the mapping. The proposed algorithm performs a two-level hierarchical decomposition. In the first global decomposition, it decomposes the neural network such that each crossbar has k spare neurons. These neurons are used to improve the accuracy of the partially mapped network in the subsequent local decomposition. Our experimental results using modern convolutional neural networks show that the proposed method can improve the accuracy substantially within about 10% extra neurons.


1991 ◽  
Vol 45 (10) ◽  
pp. 1706-1716 ◽  
Author(s):  
Mark Glick ◽  
Gary M. Hieftje

Artificial neural networks were constructed for the classification of metal alloys based on their elemental constituents. Glow discharge-atomic emission spectra obtained with a photodiode array spectrometer were used in multivariate calibrations for 7 elements in 37 Ni-based alloys (different types) and 15 Fe-based alloys. Subsets of the two major classes formed calibration sets for stepwise multiple linear regression. The remaining samples were used to validate the calibration models. Reference data from the calibration sets were then pooled into a single set to train neural networks with different architectures and different training parameters. After the neural networks learned to discriminate correctly among alloy classes in the training set, their ability to classify samples in the testing set was measured. In general, the neural network approach performed slightly better than the K-nearest neighbor method, but it suffered from a hidden classification mechanism and nonunique solutions. The neural network methodology is discussed and compared with conventional sample-classification techniques, and multivariate calibration of glow discharge spectra is compared with conventional univariate calibration.


2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


2014 ◽  
Vol 38 (6) ◽  
pp. 1681-1693 ◽  
Author(s):  
Braz Calderano Filho ◽  
Helena Polivanov ◽  
César da Silva Chagas ◽  
Waldir de Carvalho Júnior ◽  
Emílio Velloso Barroso ◽  
...  

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.


Sign in / Sign up

Export Citation Format

Share Document