scholarly journals The Construction of Polynomial Spiral Segment Using Cubic Ball Basis Functions

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Abdul Majeed ◽  
Mohsin Kamran ◽  
Muhammad Abbas

B-splines, Bezier, Ball curves and NURBS (non-uniform rational B-splines) are commonly used in CADand CAGD applications. Unfortunately their fairness is not guaranteed. Spiral segments help us in designingimproved form of curves called fair curves. Such fair curves are useful in sophisticated applications such asdesign of routes of high ways and railways and mobile robot trajectories. In this paper we have developed thepolynomial cubic Ball spiral segment with degree of freedom. The effect of shape parameters is also observed.In the end results are represented in graphical form.

2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Yuanpeng Zhu ◽  
Xuli Han ◽  
Shengjun Liu

Four new quartic rational Said-Ball-like basis functions, which include the cubic Said-Ball basis functions as a special case, are constructed in this paper. The new basis is applied to generate a class ofC1continuous quartic rational Hermite interpolation splines with local tension shape parameters. The error estimate expression of the proposed interpolant is given and the sufficient conditions are derived for constructing aC1positivity- or monotonicity- preserving interpolation spline. In addition, we extend the quartic rational Said-Ball-like basis to a triangular domain which has three tension shape parameters and includes the cubic triangular Said-Ball basis as a special case. In order to compute the corresponding patch stably and efficiently, a new de Casteljau-type algorithm is developed. Moreover, theG1continuous conditions are deduced for the joining of two patches.


2021 ◽  
Author(s):  
◽  
Grgo Kamber ◽  

The main objective of this thesis is to utilize the powerful approximation properties of Fup basis functions for numerical solutions of engineering problems with highly localized steep gradients while controlling spurious numerical oscillations and describing different spatial scales. The concept of isogeometric analysis (IGA) is presented as a unified framework for multiscale representation of the geometry and solution. This fundamentally high-order approach enables the description of all fields as continuous and smooth functions by using a linear combination of spline basis functions. Classical IGA usually employs Galerkin or collocation approach using B-splines or NURBS as basis functions. However, in this thesis, a third concept in the form of control volume isogeometric analysis (CV-IGA) is used with Fup basis functions which represent infinitely smooth splines. Novel hierarchical Fup (HF) basis functions is constructed, enabling a local hp-refinement such that they can replace certain basis functions at one resolution level with new basis functions at the next resolution level that have a smaller length of the compact support (h-refinement), but also higher order (p-refinement). This hp-refinement property enables spectral convergence which is significant improvement in comparison to the hierarchical truncated B-splines which enable h-refinement and polynomial convergence. Thus, in domain zones with larger gradients, the algorithm uses smaller local spatial scales, while in other region, larger spatial scales are used, controlling the numerical error by the prescribed accuracy. The efficiency and accuracy of the adaptive algorithm is verified with some classic 1D and 2D benchmark test cases with application to the engineering problems with highly localized steep gradients and advection-dominated problems.


2016 ◽  
Vol 825 ◽  
pp. 149-152
Author(s):  
Eva Myšáková ◽  
Matěj Lepš

Meta-modeling is a frequently used tool for analysis of systems' behavior. An original model of the system is often complex and its evaluation is expensive and time-consuming. Therefore it is desirable to execute the original model as few times as possible. A special case is when many evaluation of the model with different input parameters are necessary. Proposed solution is a use of the meta-model, in our case Radial Basis Function Network (RBFN) tool is presented. Here, the output of the meta-model is constructed as a linear combination of the radial basis functions. For good approximation a shape parameter of the radial basis functions has to be set properly. This paper describes a tuning of the shape parameters for several benchmark examples.


Author(s):  
Mohamed A. El-Komy ◽  
Sayed M. Metwalli

Non-Uniform Rational B-Splines (NURBS) can represent curves and surfaces of any degree. Usually in the same curve, however, the degree is unique. The goal of this work is to identify single and exact corner point of lines represented by cubic or other NURBS. The combination of arcs and lines can then be represented by one NURBS with error not to exceed (10−12). The developed procedure can represent any NURBS curve and surface of any degree with full control on all parameters, control points, weights, knot vectors, and number of segments representing the curve or surface, in addition to, the basis functions examination. The optimization identifies the parameters and geometry to insure any required level of accuracy to represent singular corner solid models to allow a single cubic or other NURBS representing the whole solid. It is concluded that the singular corner point can be identified with cubic NURBS. Applications to several 3D solid CAD models are used to verify such a technique.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2102
Author(s):  
Abdul Majeed ◽  
Muhammad Abbas ◽  
Faiza Qayyum ◽  
Kenjiro T. Miura ◽  
Md Yushalify Misro ◽  
...  

Trigonometric B-spline curves with shape parameters are equally important and useful for modeling in Computer-Aided Geometric Design (CAGD) like classical B-spline curves. This paper introduces the cubic polynomial and rational cubic B-spline curves using new cubic basis functions with shape parameter ξ∈[0,4]. All geometric characteristics of the proposed Trigonometric B-spline curves are similar to the classical B-spline, but the shape-adjustable is additional quality that the classical B-spline curves does not hold. The properties of these bases are similar to classical B-spline basis and have been delineated. Furthermore, uniform and non-uniform rational B-spline basis are also presented. C3 and C5 continuities for trigonometric B-spline basis and C3 continuities for rational basis are derived. In order to legitimize our proposed scheme for both basis, floating and periodic curves are constructed. 2D and 3D models are also constructed using proposed curves.


Author(s):  
Mohammad Tamsir ◽  
Neeraj Dhiman ◽  
F.S. Gill ◽  
Robin

This paper presents an approximate solution of 3D convection diffusion equation (CDE) using DQM based on modified cubic trigonometric B-spline (CTB) basis functions. The DQM based on CTB basis functions are used to integrate the derivatives of space variables which transformed the CDE into the system of first order ODEs. The resultant system of ODEs is solved using SSPRK (5,4) method. The solutions are approximated numerically and also presented graphically. The accuracy and efficiency of the method is validated by comparing the solutions with existing numerical solutions. The stability analysis of the method is also carried out.


Sign in / Sign up

Export Citation Format

Share Document