scholarly journals 454 Sequencing

2020 ◽  
Author(s):  
Keyword(s):  
BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Chris D Lowe ◽  
Luciane V Mello ◽  
Najma Samatar ◽  
Laura E Martin ◽  
David JS Montagnes ◽  
...  

2016 ◽  
Vol 82 (15) ◽  
pp. 4757-4766 ◽  
Author(s):  
Caterina R. Giner ◽  
Irene Forn ◽  
Sarah Romac ◽  
Ramiro Logares ◽  
Colomban de Vargas ◽  
...  

ABSTRACTHigh-throughput sequencing (HTS) is revolutionizing environmental surveys of microbial diversity in the three domains of life by providing detailed information on which taxa are present in microbial assemblages. However, it is still unclear how the relative abundance of specific taxa gathered by HTS correlates with cell abundances. Here, we quantified the relative cell abundance of 6 picoeukaryotic taxa in 13 planktonic samples from 6 European coastal sites using epifluorescence microscopy on tyramide signal amplification-fluorescencein situhybridization preparations. These relative abundance values were then compared with HTS data obtained in three separate molecular surveys: 454 sequencing of the V4 region of the 18S ribosomal DNA (rDNA) using DNA and RNA extracts (DNA-V4 and cDNA-V4) and Illumina sequencing of the V9 region (cDNA-V9). The microscopic and molecular signals were generally correlated, indicating that a relative increase in specific 18S rDNA was the result of a large proportion of cells in the given taxa. Despite these positive correlations, the slopes often deviated from 1, precluding a direct translation of sequences to cells. Our data highlighted clear differences depending on the nucleic acid template or the 18S rDNA region targeted. Thus, the molecular signal obtained using cDNA templates was always closer to relative cell abundances, while the V4 and V9 regions gave better results depending on the taxa. Our data support the quantitative use of HTS data but warn about considering it as a direct proxy of cell abundances.IMPORTANCEDirect studies on marine picoeukaryotes by epifluorescence microscopy are problematic due to the lack of morphological features and due to the limited number and poor resolution of specific phylogenetic probes used in fluorescencein situhybridization (FISH) routines. As a consequence, there is an increasing use of molecular methods, including high-throughput sequencing (HTS), to study marine microbial diversity. HTS can provide a detailed picture of the taxa present in a community and can reveal diversity not evident using other methods, but it is still unclear what the meaning of the sequence abundance in a given taxon is. Our aim is to investigate the correspondence between the relative HTS signal and relative cell abundances in selected picoeukaryotic taxa. Environmental sequencing provides reasonable estimates of the relative abundance of specific taxa. Better results are obtained when using RNA extracts as the templates, while the region of 18S ribosomal DNA had different influences depending on the taxa assayed.


2015 ◽  
Vol 3 (12) ◽  
pp. 1500088 ◽  
Author(s):  
Juan Viruel ◽  
Pedro L. Ortiz ◽  
Montserrat Arista ◽  
María Talavera

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2936 ◽  
Author(s):  
Caroline E. Dubé ◽  
Serge Planes ◽  
Yuxiang Zhou ◽  
Véronique Berteaux-Lecellier ◽  
Emilie Boissin

Quantifying the genetic diversity in natural populations is crucial to address ecological and evolutionary questions. Despite recent advances in whole-genome sequencing, microsatellite markers have remained one of the most powerful tools for a myriad of population genetic approaches. Here, we used the 454 sequencing technique to develop microsatellite loci in the fire coralMillepora platyphylla, an important reef-builder of Indo-Pacific reefs.We tested the cross-species amplification of these loci in five other species of the genusMilleporaand analysed its success in correlation with the genetic distances between species using mitochondrial 16S sequences. We succeeded in discovering fifteen microsatellite loci in our target speciesM. platyphylla,among which twelve were polymorphic with 2–13 alleles and a mean observed heterozygosity of 0.411. Cross-species amplification in the five otherMilleporaspecies revealed a high probability of amplification success (71%) and polymorphism (59%) of the loci. Our results show no evidence of decreased heterozygosity with increasing genetic distance. However, only one locus enabled measures of genetic diversity in the Caribbean speciesM. complanatadue to high proportions of null alleles for most of the microsatellites. This result indicates that our novel markers may only be useful for the Indo-Pacific species ofMillepora.Measures of genetic diversity revealed significant linkage disequilibrium, moderate levels of observed heterozygosity (0.323–0.496) and heterozygote deficiencies for the Indo-Pacific species. The accessibility to new polymorphic microsatellite markers for hydrozoanMilleporaspecies creates new opportunities for future research on processes driving the complexity of their colonisation success on many Indo-Pacific reefs.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kamila Caraballo Cortés ◽  
Osvaldo Zagordi ◽  
Tomasz Laskus ◽  
Rafał Płoski ◽  
Iwona Bukowska-Ośko ◽  
...  

Genetic variability of hepatitis C virus (HCV) determines pathogenesis of infection, including viral persistence and resistance to treatment. The aim of the present study was to characterize HCV genetic heterogeneity within a hypervariable region 1 (HVR1) of a chronically infected patient by ultradeep 454 sequencing strategy. Three independent sequencing error correction methods were applied. First correction method (Method I) implemented cut-off for genetic variants present in less than 1%. In the second method (Method II), a condition to call a variant was bidirectional coverage of sequencing reads. Third method (Method III) usedShort Read Assembly into Haplotypes(ShoRAH) program. After the application of these three different algorithms, HVR1 population consisted of 8, 40, and 186 genetic haplotypes. The most sensitive method was ShoRAH, allowing to reconstruct haplotypes constituting as little as 0.013% of the population. The most abundant genetic variant constituted only 10.5%. Seventeen haplotypes were present in a frequency above 1%, and there was wide dispersion of the population into very sparse haplotypes. Our results indicate that HCV HVR1 heterogeneity andquasispeciespopulation structure may be reconstructed by ultradeep sequencing. However, credible analysis requires proper reconstruction methods, which would distinguish sequencing error from real variabilityin vivo.


Sign in / Sign up

Export Citation Format

Share Document