scholarly journals PKC-alpha Antisense Oligodeoxynucleotide ISIS 3521

2020 ◽  
Author(s):  
2005 ◽  
Vol 173 (4S) ◽  
pp. 210-211
Author(s):  
Kazuki Yamanaka ◽  
Hideaki Miyake ◽  
Mototsugu Muramaki ◽  
Sadao Kamidono ◽  
Martin E. Gleave ◽  
...  

2000 ◽  
Vol 278 (1) ◽  
pp. F110-F121 ◽  
Author(s):  
Hirokazu Okada ◽  
Kenshi Moriwaki ◽  
Raghuram Kalluri ◽  
Tsuneo Takenaka ◽  
Hiroe Imai ◽  
...  

In this study, we have shown that intravenously administered antisense oligodeoxynucleotide (ODN) was demonstrated to be taken up by tubular epithelium, after which it blocked mRNA expression of target genes in normal and nephritic rats. Therefore, we injected osteopontin (OPN) antisense ODN to Goodpasture syndrome (GPS) rats every second day between days 27 and 35, the time when renal OPN expression increased and interstitial monocyte infiltration was aggravated. In parallel to blockade of tubular OPN expression, this treatment significantly attenuated monocyte infiltration and preserved renal plasma flow in GPS rats at day 37, compared with sense ODN-treated and untreated GPS rats. No significant changes were observed in OPN mRNA level by RT-PCR and histopathology of the glomeruli after ODN treatment, which was compatible with an absence of differences in the urinary protein excretion rate. In conclusion, OPN expressed by tubular epithelium played a pivotal role in mediating peritubular monocyte infiltration consequent to glomerular disease.


1996 ◽  
Vol 16 (4) ◽  
pp. 1842-1850 ◽  
Author(s):  
G Baier-Bitterlich ◽  
F Uberall ◽  
B Bauer ◽  
F Fresser ◽  
H Wachter ◽  
...  

T-lymphocyte stimulation requires activation of several protein kinases, including the major phorbol ester receptor protein kinase C (PKC), ultimately leading to induction of lymphokines, such as interleukin-2 (IL-2). The revelant PKC isoforms which are involved in the activation cascades of nuclear transcription factors involved in IL-2 production have not yet been clearly defined. We have examined the potential role of two representative PKC isoforms in the induction of the IL-2 gene, i.e., PKC-alpha and PKC-theta, the latter being expressed predominantly in hematopoietic cell lines, particularly T cells. Similar to that of PKC-alpha, PKC-theta overexpression in murine EL4 thymoma cells caused a significant increase in phorbol 12-myristate 13-acetate (PMA)-induced transcriptional activation of full-length IL-2-chloramphenicol acetyltransferase (CAT) and NF-AT-CAT but not of NF-IL2A-CAT or NF-kappaB promoter-CAT reporter gene constructs. Importantly, the critical AP-1 enhancer element was differentially modulated by these two distinct PKC isoenzymes, since only PKC-theta but not PKC-alpha overexpression resulted in an approximately 2.8-fold increase in AP-1-collagenase promoter CAT expression in comparison with the vector control. Deletion of the AP-1 enhancer site in the collagenase promoter rendered it unresponsive to PKC-theta. Expression of a constitutively active mutant PKC-theta A148E (but not PKC-alpha A25E) was sufficient to induce activation of AP-1 transcription factor complex in the absence of PMA stimulation. Conversely, a catalytically inactive PKC-theta K409R (but not PKC-alpha K368R) mutant abrogated endogenous PMA-mediated activation of AP-1 transcriptional complex. Dominant negative mutant Ha-RasS17N completely inhibited the PKC-O A148E-induced signal, PKC-O. Expression of a constitutively active mutant PKC-O A148E (but not PKC-alpha A25E) was sufficient to induce activation of AP-1 transcription factor complex in the absence of PMA stimulation. Conversely, a catalytically inactive PKC-O K409R (but not PKC-alpha K368R) mutant abrogated endogenous PMA-mediated activation of AP-1 transcriptional complex. Dominant negative mutant Ha-enRasS17N completely inhibited in the PKC-O A148E-induced signal, identifying PKC-theta as a specific constituent upstream of or parallel to Ras in the signaling cascade leading to AP transcriptional activation.


1996 ◽  
Vol 7 (1) ◽  
pp. 13-28 ◽  
Author(s):  
Sui-Po Zhang ◽  
Long-Wu Zhou ◽  
Mark Morabito ◽  
Rick C. S. Lin ◽  
Benjamin Weiss

1993 ◽  
Vol 13 (7) ◽  
pp. 4382-4390
Author(s):  
O J Rimoldi ◽  
B Raghu ◽  
M K Nag ◽  
G L Eliceiri

We have recently described three novel human small nucleolar RNA species with unique nucleotide sequences, which were named E1, E2, and E3. The present article describes specific psoralen photocross-linking in whole HeLa cells of E1, E2, and E3 RNAs to nucleolar pre-rRNA. These small RNAs were cross-linked to different sections of pre-rRNA. E1 RNA was cross-linked to two segments of nucleolar pre-rRNA; one was within residues 697 to 1163 of the 5' external transcribed spacer, and the other one was between nucleotides 664 and 1021 of the 18S rRNA sequence. E2 RNA was cross-linked to a region within residues 3282 to 3667 of the 28S rRNA sequence. E3 RNA was cross-linked to a sequence between positions 1021 and 1639 of the 18S rRNA sequence. Primer extension analysis located psoralen adducts in E1, E2, and E3 RNAs that were enriched in high-molecular-weight fractions of nucleolar RNA. Some of these psoralen adducts might be cross-links of E1, E2, and E3 RNAs to large nucleolar RNA. Antisense oligodeoxynucleotide-targeted RNase H digestion of nucleolar extracts revealed accessible segments in these three small RNAs. The accessible regions were within nucleotide positions 106 to 130 of E1 RNA, positions 24 to 48 and 42 to 66 of E2 RNA, and positions 7 to 16 and about 116 to 122 of E3 RNA. Some of the molecules of these small nucleolar RNAs sedimented as if associated with larger structures when both nondenatured RNA and a nucleolar extract were analyzed.


Sign in / Sign up

Export Citation Format

Share Document