scholarly journals Out-Lab Therapy Approach Based on Elected A Restriction Enzyme to Transfer Target Gene

2018 ◽  
Vol 2 (2) ◽  
pp. 196-208
Author(s):  
Ayad Ismaeel

An important approach of therapy the target gene sequence causes diseases via repair/recombine the mutated gene (gene transfer) using a restriction enzymes in the laboratory. This approach will cause multiple problems happening accompany to biological laboratory if ruled out problems outside of it like the digested DNA ran as a smear on an agarose gel, incomplete restriction enzyme digestion, extra bands in the gel, etc. The paper suggested new approach of therapy via repair/replacement mutated gene caused disease by detecting primers and finding restriction enzymes using bioinformatics tools, software, packages etc. then achieving the repair/ recombine of mutations before going to the biologic lab (out-lab) to avoid the problems associated these laboratories. Implement and apply this a proposed therapy approach on TP53 gene (which caused more than 50% of human cancers) and after confirming there is mutations on P53 tumor protein shows an effective cost, friendly therapy methodology and comprehensive.

2007 ◽  
Vol 56 (2) ◽  
pp. 208-216 ◽  
Author(s):  
Mark M. Collery ◽  
Cyril J. Smyth

The egc locus of Staphylococus aureus harbours two enterotoxin genes (seg and sei) and three enterotoxin-like genes (selm, seln and selo). Between the sei and seln genes are located two pseudogenes, ψent1 and ψent2, or the selu or selu v gene. While these two alternative sei–seln intergenic regions can be distinguished by PCR, to date, DNA sequencing has been the only confirmatory option because of the very high degree of sequence similarity between egc loci bearing the pseudogenes and the selu or selu v gene. In silico restriction enzyme digestion of genomic regions encompassing the egc locus from the 3′ end of the sei gene through the 5′ first quarter of the seln gene allowed pseudogene- and selu- or selu v-bearing egc loci to be distinguished by PCR-RFLP. Experimental application of these findings demonstrated that endonuclease HindIII cleaved PCR amplimers bearing pseudogenes but not those with a selu or selu v gene, while selu- or selu v-bearing amplimers were susceptible to cleavage by endonuclease HphI, but not by endonuclease HindIII. The restriction enzyme BccI cleaved selu- or selu v-harbouring amplimers at a unique restriction site created by their signature 15 bp insertion compared with pseudogene-bearing amplimers, thereby allowing distinction of these egc loci. PCR-RFLP analysis using these restriction enzymes provides a rapid, easy to interpret alternative to DNA sequencing for verification of PCR findings on the nature of an egc locus type, and can also be used for the primary identification of the intergenic sei–seln egc locus type.


Genome ◽  
1988 ◽  
Vol 30 (5) ◽  
pp. 652-655 ◽  
Author(s):  
Ute Hedemann ◽  
M. Schürmann ◽  
E. Schwinger

Human metaphase chromosomes, fixed on slides, have been treated with 8 different restriction endonucleases and 29 combinations of 2 restriction enzymes prior to staining with Giemsa. The endonucleases AluI and DdeI and the combinations AluI + DdeI, AluI + HaeIII, AluI + HinfI, and AluI + MboI have then been used to digest metaphase chromosomes of nine individuals with C-band variants of chromosomes 1 or 9, obtained by the CBG technique. The restriction enzyme resistant chromatin of the paracentromeric regions of chromosomes 1 and 9 has been measured and compared with the corresponding CBG-bands. The size of the enzyme resistant chromatin regions depend upon the type of enzyme(s) used. Treatment with AluI + MboI was the only digestion that acted differently on different chromosome pairs. However, within one pair of homologous chromosomes, all digestions revealed the same variations as conventional C-banding.Key words: C-band variants, heterochromatin, human chromosomes, restriction endonucleases.


Genome ◽  
2004 ◽  
Vol 47 (5) ◽  
pp. 781-788 ◽  
Author(s):  
A Leitão ◽  
R Chaves ◽  
S Santos ◽  
H Guedes-Pinto ◽  
P Boudry

Reliable banding techniques are a major necessity for genetic research in oysters. In this study, we carried out the cytogenetic characterization of four oyster species (family Ostreidae) using restriction endonuclease treatments. Chromosomes were treated with three different restriction enzymes, stained with Giemsa, and examined for banding patterns. The following species were studied: Crassostrea gigas (2n = 20; total number of bands with ApaI, 74; HaeIII, 61; PstI, 76), Crassostrea angulata (2n = 20; ApaI, 62; HaeIII, 61; PstI, 55) (subfamily Crassostreinae), Ostrea edulis (2n = 20; ApaI, 82; HaeIII, 59; PstI, 66), and Ostrea conchaphila (2n = 20; ApaI, 68; HaeIII, 62; PstI, 69) (subfamily Ostreinae). Treatment of samples with ApaI, HaeIII, and PstI produced specific banding patterns, which demonstrates the potential of these enzymes for chromosome banding in oysters. This is of special interest, since it has been recently shown in mammalian chromosomes that restriction enzyme banding is compatible with fluorescence in situ hybridization. This study therefore provides a fundamental step in genome mapping of oysters, since chromosome banding with restriction enzymes facilitates physical gene mapping in these important aquaculture species. The analysis of the banded karyotypes revealed a greater similarity within the genera of Crassostrea and Ostrea than between them.Key words: Ostreidae, Crassostrea, Ostrea, chromosome banding, in situ restriction enzyme banding.


2017 ◽  
Author(s):  
Natalia J Bayona-Vásquez ◽  
Travis C Glenn ◽  
Troy J Kieran ◽  
Todd W Pierson ◽  
Sandra L Hoffberg ◽  
...  

AbstractMolecular ecologists frequently use genome reduction strategies that rely upon restriction enzyme digestion of genomic DNA to sample consistent portions of the genome from many individuals (e.g., RADseq, GBS). However, researchers often find the existing methods expensive to initiate and/or difficult to implement consistently, especially due to the inability to highly-multiplex samples to fill entire sequencing lanes. Here, we introduce a low-cost and highly robust approach for the construction of dual-digest RADseq libraries that relies on adapters and primers designed in Adapterama I. Major features of our method include: 1) minimizing the number of processing steps; 2) focusing on a single strand of sample DNA for library construction, allowing the use of a non-phosphorylated adapter on one end; 3) ligating adapters in the presence of active restriction enzymes, thereby reducing chimeras; 4) including an optional third restriction enzyme to cut apart adapter-dimers formed by the phosphorylated adapter, thus increasing the efficiency of adapter ligation to sample DNA, which is particularly effective when only low quantity/quality DNA samples are available; 5) interchangeable adapter designs; 6) incorporating variable-length internal indexes within the adapters to increase the scope of sample indexing, facilitate pooling, and increase sequence diversity; 7) maintaining compatibility with universal dual-indexed primers and thus, Illumina sequencing reagents and libraries; and, 8) easy modification for the identification of PCR duplicates. We present eight adapter designs that work with 72 restriction enzyme combinations. We demonstrate the efficiency of our approach by comparing it with existing methods, and we validate its utility through the discovery of many variable loci in a variety of non-model organisms. Our 2RAD/3RAD method is easy to perform, has low startup costs, has increased utility with low-concentration input DNA, and produces libraries that can be highly-multiplexed and pooled with other Illumina libraries.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7724 ◽  
Author(s):  
Natalia J. Bayona-Vásquez ◽  
Travis C. Glenn ◽  
Troy J. Kieran ◽  
Todd W. Pierson ◽  
Sandra L. Hoffberg ◽  
...  

Molecular ecologists frequently use genome reduction strategies that rely upon restriction enzyme digestion of genomic DNA to sample consistent portions of the genome from many individuals (e.g., RADseq, GBS). However, researchers often find the existing methods expensive to initiate and/or difficult to implement consistently, especially because it is difficult to multiplex sufficient numbers of samples to fill entire sequencing lanes. Here, we introduce a low-cost and highly robust approach for the construction of dual-digest RADseq libraries that build on adapters and primers designed in Adapterama I. Major features of our method include: (1) minimizing the number of processing steps; (2) focusing on a single strand of sample DNA for library construction, allowing the use of a non-phosphorylated adapter on one end; (3) ligating adapters in the presence of active restriction enzymes, thereby reducing chimeras; (4) including an optional third restriction enzyme to cut apart adapter-dimers formed by the phosphorylated adapter, thus increasing the efficiency of adapter ligation to sample DNA, which is particularly effective when only low quantity/quality DNA samples are available; (5) interchangeable adapter designs; (6) incorporating variable-length internal indexes within the adapters to increase the scope of sample indexing, facilitate pooling, and increase sequence diversity; (7) maintaining compatibility with universal dual-indexed primers and thus, Illumina sequencing reagents and libraries; and, (8) easy modification for the identification of PCR duplicates. We present eight adapter designs that work with 72 restriction enzyme combinations. We demonstrate the efficiency of our approach by comparing it with existing methods, and we validate its utility through the discovery of many variable loci in a variety of non-model organisms. Our 2RAD/3RAD method is easy to perform, has low startup costs, has increased utility with low-concentration input DNA, and produces libraries that can be highly-multiplexed and pooled with other Illumina libraries.


Caryologia ◽  
1993 ◽  
Vol 46 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Valeria Mirkova ◽  
Maria Ivanchenko ◽  
Lubomir Stoilov ◽  
Jordanka Zlatanova

In DNA splicing systems, restriction enzymes and ligases cleave and recombine DNA molecules based on the cleavage pattern of the restriction enzymes. The set of molecules resulting from the splicing system depicts a splicing language. In this research, an algorithm for DNA splicing systems is developed using C++ visual programming. The splicing languages which have been characterised through some theorems based on the crossings and sequences of the restriction enzymes, are generated as the output from this computation. In order to generate the splicing languages, the algorithm detects and calculates the number of cutting sites of the restriction enzymes found in the initial molecules, determines whether the sequence of restriction enzyme is a palindrome or not, and if the restriction enzymes have the same or different crossings. The results from this research depict the splicing languages obtained from the manual computations, which contributes to the development of computational software in DNA computing.


2021 ◽  
Vol 888 (1) ◽  
pp. 012024
Author(s):  
P W Prihandini ◽  
A Primasari ◽  
M Luthfi ◽  
D Pamungkas ◽  
A P Z N L Sari ◽  
...  

Abstract The restriction enzyme is important for genotyping using the PCR-RFLP technique. Therefore, this study aims to identify the restriction enzyme mapping in the partial sequence of the follicle-stimulating hormone receptor (FSHR) gene in Indonesian local cattle. A total of 29 samples sized 306 bp, were aligned with Genbank sequence acc no. NC_032660, resulting three polymorphic sites, namely g.193G>C, g.227T>C, and g.275A>C. Furthermore, the restriction mapping analysis using the NEBcutter program V2.0 showed that no enzyme recognized the SNP g.275A>C, while the SNP g.193G>C and g.227T>C were identified by the AluI and MscI enzymes, respectively. The AluI enzyme cuts at two positions (193 bp and 243 bp) in the G allele sample producing three fragments namely 50 bp, 63 bp, and 193 bp, meanwhile, in the C allele, the AluI cuts only in position 243 bp, hence, the fragment products are 63 bp and 243 bp. In contrast, the MscI enzyme was only recognized in the T allele, producing fragments sized 77 bp and 229 bp but failed to identify the restriction site along with the PCR products in the C allele. Based on the results, the SNPs (g.193G>C and g.227T>C) and restriction enzymes (AluI and MscI) are applicable for genotyping local Indonesian cattle using the PCR-RFLP technique in future studies.


2018 ◽  
Vol 14 (2) ◽  
pp. 188-192
Author(s):  
Nurul Izzaty Ismail ◽  
Wan Heng Fong ◽  
Nor Haniza Sarmin

In DNA splicing system, the potential effects of sets of restriction enzymes and a ligase that allow DNA molecules to be cleaved and reassociated to produce further molecules are studied.  A splicing language depicts the molecules resulting from a splicing system.  In this research, a C++ programming code for DNA splicing system with one palindromic restriction enzyme for one and two (non-overlapping) cutting sites is developed.  A graphical user interface, GUI is then designed to allow the user to insert the initial DNA string and restriction enzymes to generate the splicing languages which are the result of the computation of the C++ programming.  This interface displays the resulting splicing languages, which depict the results from in vitro experiments of the respective splicing system.  The results from this research simplify the lenghty manual computation of the resulting splicing languages of DNA splicing systems with one palindromic restriction enzyme.   


Sign in / Sign up

Export Citation Format

Share Document