gravel bed rivers
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 62)

H-INDEX

57
(FIVE YEARS 5)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1285
Author(s):  
Natalia Bustamante-Penagos ◽  
Yarko Niño

This article discusses the results of an experimental study of a spill of mineral particles in gravel-bed rivers due to mining accidents. The purpose of this research is to characterize the dynamics of the fine mining particles spilled on a bed of immobilized gravel as a hyper-concentrated mixture and to experimentally characterize the infiltration phenomenon. We analyzed the type of infiltration considering the dimensionless coarse to fine particle size relationship, the dimensionless weight of the fine particles, the relative density of the particles, and the relationship between the subsurface and surface velocities, in addition to the densimetric Froude and Reynolds numbers of the fine particles. We found that the dimensionless infiltration depth is not associated with hydraulic parameters or the weight of the fine sediment spilled; however, fine sediment deposition decreases with depth, and infiltration depth may increase if subsurface flow decreases over time. Finally, a relationship of the dimensionless maximum infiltration depth with the relative density of the mining particles, the ratio of the bed sediment and the mining particles sizes, and the ratio between the subsurface and surface velocities is established.


Author(s):  
Rossano Bolpagni ◽  
Alice Dalla Vecchia

A huge knowledge gap exists on riverine pioneer herbaceous vegetation. Despite its relevance in regulating the C metabolism at the catchment scale, and the triggering role in shrubs and trees establishment along riverbanks, little data is available on its environmental determinants. Indeed, most existing knowledge in this field refers to woody species or aquatic macrophytes neglecting the ecosystem relevance of ephemeral herbaceous vegetation. Focusing on three gravel bed rivers located in northern Italy (Baganza, Nure and Parma streams), the present study is aimed to evaluate the riverine ephemeral plant richness, considering both native and alien taxa, and the role of hydrogeomorphological disturbance and sediment quality in the observed richness patterns. At higher disturbance rates (e.g., larger river sizes), our data indicates a progressive decrease in overall plant richness, but also an increase in the coverage-abundance rates mainly due to alien species. This evidence confirms that variations in hydrology imply changes in pioneer plant species richness at in-stream periodically exposed sediments. More attention must be given to the vulnerability of pioneer vegetation to climate change and direct human impacts to fully understand the functioning of lotic ecosystems, especially the non-perennial ones.


2021 ◽  
Vol 9 (2) ◽  
pp. 333-350
Author(s):  
Chenge An ◽  
Marwan A. Hassan ◽  
Carles Ferrer-Boix ◽  
Xudong Fu

Abstract. With the increasing attention on environmental flow management for the maintenance of habitat diversity and ecosystem health of mountain gravel-bed rivers, much interest has been paid to how inter-flood low flow can affect gravel-bed river morphodynamics during subsequent flood events. Previous research has found that antecedent conditioning flow can lead to an increase in critical shear stress and a reduction in sediment transport rate during a subsequent flood. However, how long this effect can last during the flood event has not been fully discussed. In this paper, a series of flume experiments with various durations of conditioning flow are presented to study this problem. Results show that channel morphology adjusts significantly within the first 15 min of the conditioning flow but becomes rather stable during the remainder of the conditioning flow. The implementation of conditioning flow can indeed lead to a reduction of sediment transport rate during the subsequent hydrograph, but such an effect is limited to within a relatively short time at the beginning of the hydrograph. This indicates that bed reorganization during the conditioning phase, which induces the stress history effect, is likely to be erased with increasing intensity of flow and sediment transport during the subsequent flood event.


2021 ◽  
Author(s):  
Hanna Haddad ◽  
Magali Jodeau ◽  
Germain Antoine ◽  
Cédric Legoût

<p>Fine sediments exhibit various stages of deposition and erosion during their transport from hillslopes to the ocean. In mountainous environments, high fine sediment load during runoff or dam flushing events can lead to important amounts of deposits in gravel bed rivers. Massive deposits may lead to bar elevation, riparian vegetation growth and consequently to bar stabilization, which can increase flood risks. High amount of fine sediment deposits alters also aquatic life and habitat.</p><p>In order to better understand the dynamics of re-suspension of these deposits, and to accurately predict it with numerical modelling, field monitoring campaigns were performed to assess both the spatial variability and the controlling factors of the erodibility of fine deposits. The cohesive strength-meter (CSM) device, a pocket penetrometer and a pocket shear vane were used to evaluate the erodibility of fine sediments deposited in two rivers in the French Alps: The Isère and Galabre.</p><p>The results highlight the specificity of gravel bed rivers with an abundance of areas of deposition of fine sediments, which are discontinuous compared to estuaries and lowland rivers. A high spatial variability of the erodibility was observed and related to the spatial organization of the deposits. The location of the deposit and its elevation, the moisture and the grain sizes are inter-related and have important correlations with the erodibility. Measurements show that high altitude dry deposits and low altitude humid deposits are more easily eroded than intermediate deposits with medium moisture. The measured variables explain part of the variability of the erodibility but other processes such as the history or the origin of the deposit might also be important factors to consider.</p>


2021 ◽  
Author(s):  
Chenge An ◽  
Marwan A. Hassan ◽  
Carles Ferrer-Boix ◽  
Xudong Fu

<p>Recently, there has been an increasing attention on the environmental flow management for the maintenance of habitat diversity and ecosystem health of mountain gravel-bed rivers. More specifically, much interest has been paid to how inter-flood low flow can affect gravel-bed river morphodynamics during subsequent flood events. Such an effect is often termed as “stress history” effect. Previous research has found that antecedent conditioning flow can lead to an increase in the critical shear stress and a reduction in sediment transport rate during a subsequent flood. But how long this effect can last during the flood event has not been fully discussed. In this study, a series of flume experiments with various durations of conditioning flow are presented to study this problem. Results show that channel morphology adjusts significantly within the first 15 minutes of the conditioning flow, but becomes rather stable during the remainder of the conditioning flow. The implementation of conditioning flow can indeed lead to a reduction of sediment transport rate during the subsequent hydrograph, but such effect is limited only within a relatively short time at the beginning of the hydrograph. This indicates that bed reorganization during the conditioning phase, which induce the stress history effect, is likely to be erased with increasing intensity of flow and sediment transport during the subsequent flood event.</p>


Sign in / Sign up

Export Citation Format

Share Document