scholarly journals Time series prediction: A combination of Long Short-Term Memory and structural time series models

Author(s):  
Quoc Luu ◽  
Son Nguyen ◽  
Uyen Pham

Stock market is an important capital mobilization channel for economy. However, the market has potential loss due to fluctuations of stock prices to reflect uncertain events such as political news, supply and demand of daily trading volume. There are many approaches to reduce risk such as portfolio construction and optimization, hedging strategies. Hence, it is critical to leverage time series prediction techniques to achieve higher performance in stock market. Recently, Vietnam stock markets have gained more and more attention as their performance and capitalization improvement. In this work, we use market data from Vietnam’s two stock market to develop an incorporated model that combines Sequence to Sequence with Long-Short Term Memory model of deep learning and structural models time series. We choose 21 most traded stocks with over 500 trading days from VN-Index of Ho Chi Minh Stock Exchange and HNX-Index of Hanoi Stock Exchange (Vietnam) to perform the proposed model and compare their performance with pure structural models and Sequence to Sequence. For back testing, we use our model to decide long or short position to trade VN30F1M (VN30 Index Futures contract settle within one month) that are traded on HNX exchange. Results suggest that the Sequence to Sequence with LSTM model of deep learning and structural models time series achieve higher performance with lower prediction errors in terms of mean absolute error than existing models for stock price prediction and positive profit for derivative trading. This work significantly contribute to literature of time series prediction as our approach can relax heavy assumptions of existing methodologies such as Auto-regressive–moving-average model, Generalized Auto-regressive Conditional Heteroskedasticity. In practical, investors from Vietnam stock market can use the proposed model to develop trading strategies.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2392
Author(s):  
Antonello Rosato ◽  
Rodolfo Araneo ◽  
Amedeo Andreotti ◽  
Federico Succetti ◽  
Massimo Panella

Here, we propose a new deep learning scheme to solve the energy time series prediction problem. The model implementation is based on the use of Long Short-Term Memory networks and Convolutional Neural Networks. These techniques are combined in such a fashion that inter-dependencies among several different time series can be exploited and used for forecasting purposes by filtering and joining their samples. The resulting learning scheme can be summarized as a superposition of network layers, resulting in a stacked deep neural architecture. We proved the accuracy and robustness of the proposed approach by testing it on real-world energy problems.


2019 ◽  
Vol 57 (6) ◽  
pp. 114-119 ◽  
Author(s):  
Yuxiu Hua ◽  
Zhifeng Zhao ◽  
Rongpeng Li ◽  
Xianfu Chen ◽  
Zhiming Liu ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 66856-66866
Author(s):  
Liyan Xiong ◽  
Xiangzheng Ling ◽  
Xiaohui Huang ◽  
Hong Tang ◽  
Weimin Yuan ◽  
...  

2021 ◽  
Author(s):  
Linkai Wang ◽  
Jing Chen ◽  
Wei Wang ◽  
Ruofan Wang ◽  
Lina Yang ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2832
Author(s):  
Nazanin Fouladgar ◽  
Kary Främling

Multivariate time series with missing data is ubiquitous when the streaming data is collected by sensors or any other recording instruments. For instance, the outdoor sensors gathering different meteorological variables may encounter low material sensitivity to specific situations, leading to incomplete information gathering. This is problematic in time series prediction with massive missingness and different missing rate of variables. Contribution addressing this problem on the regression task of meteorological datasets by employing Long Short-Term Memory (LSTM), capable of controlling the information flow with its memory unit, is still missing. In this paper, we propose a novel model called forward and backward variable-sensitive LSTM (FBVS-LSTM) consisting of two decay mechanisms and some informative data. The model inputs are mainly the missing indicator, time intervals of missingness in both forward and backward direction and missing rate of each variable. We employ this information to address the so-called missing not at random (MNAR) mechanism. Separately learning the features of each parameter, the model becomes adapted to deal with massive missingness. We conduct our experiment on three real-world datasets for the air pollution forecasting. The results demonstrate that our model performed well along with other LSTM-derivation models in terms of prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document