scholarly journals Effective doses for external exposure from the photon radiation field of soil contamination

Author(s):  
Tran Van Hung

Organ and effective doses of adult for external exposure to photons uniformly distributed in soil were calculated using a MIRD-5 type phantom and MCNP code. The calculations were performed for mono-energic photon sources with source energies from 0.01 MeV to 5 MeV. The effective dose coefficients in this calculation using MCNP code were compared to the calculated results in report of Keith F. Eckerman và Jeffrey C. Ryman.

2020 ◽  
Vol 191 (2) ◽  
pp. 188-191
Author(s):  
Petr P S Otahal ◽  
Ivo Burian ◽  
Eliska Fialova ◽  
Josef Vosahlik

Abstract Measurements of activity concentration of radon gas and radon decay products were carried out in several workplaces including schools, radium spas, swimming pools, water treatment plants, caves and former mines. Based on these measurements, annual effective doses to workers were estimated and values of the equilibrium factor, F, were calculated. This paper describes the different approaches used to estimate the annual effective dose based on the dose coefficients recommended by the International Commission on Radiological Protection. Using the measured F values as opposed to the default F value of 0.4 changed the doses by about 5–95% depending mainly upon the ventilation conditions of the workplace.


Author(s):  
Michal Panik ◽  
Vladimir Necas

This paper presents ongoing results of the project presented at ICEM’10 [1] related to the topics of reusing the conditionally released materials from decommissioning. The subject of the reuse of conditionally released materials in this case is modeling of bridge constructions which reuse the conditionally released steel in the form of reinforcement bars for the concrete bridges. A general approach for the project was presented at ICEM’10. The activities of the project continue in evaluating the individual effective doses from the external exposure based on reused conditionally released steels separately for public and for professionals (the internal exposure will be evaluated in next stages of the project). Evaluated scenarios are related to critical groups of professionals constructing the bridges (worker’s scenarios). The computer code VISIPLAN 3D ALARA 4.0 planning tool was used for the calculation of the individual effective dose for professionals. Various limits of the annual individual effective dose are used for the evaluation of calculation results. The aim of the ongoing modeling is to develop a set of data of maximal radioactivity concentration for individual radionuclides in the conditionally released steel used in the bridges model constructions in order not to exceed the limits for the individual effective dose.


Author(s):  
Anas M Ababneh ◽  
Qutad M Samarah

Abstract It is inevitable that we are exposed to radiation daily from various sources and products that we consume on daily basis. The use of toothpaste for oral hygiene is one of the most common daily practices by humans and yet very little data are available regarding its radiation content. In this work, we investigated the concentrations of gamma emitting radionuclides in toothpaste samples consumed in Jordan. 40K and 226Ra were detected in almost one-third of the samples, whereas 228Ra was detected in nearly half of them. The corresponding activity concentrations in the detected samples were in the ranges of 68.7–154.2, 4.6–14.1 and 1.3–10.0 Bq/kg, respectively. Dose assessment of accidental ingestion of toothpaste for children and adults was made, and its contribution to the annual effective dose was found to be very minimal with maximum doses of ~2.9 and 1.3 μSv for children and adults, respectively.


Author(s):  
Martin Ian Ralph ◽  
Marcus Cattani

Abstract In the 2019-20 reporting period, nineteen mining operations in Western Australia were identified as having workers who were likely to be exposed to ionising radiation stemming from naturally occurring radioactive materials (NORMs), seventeen of which, known hereinafter as Reporting Entities (REs), were required to submit an annual report of the dose estimates of their workforce to the mining regulatory authority. In 2018 the International Commission for Radiological Protection published the revision of the Dose Coefficients (DCs) for occupational intakes of radionuclides of the uranium-238 and thorium-232 decay series, in ICRP-137 and ICRP-141. The 2019-20 annual reports are the first to apply the revised DCs to estimate worker doses. The mean effective dose (ED) reported by the 17 REs increased by 32.4% to 0.94 mSv in 2019-20 from 0.71 mSv reported in 2018-19, indicating that the mean ED is approaching the 1 mSv annual dose estimate at which regulatory intervention should be considered. The mean committed effective dose (CED) from inhalation of dusts containing long-lived alpha-emitting (LLα) nuclides has increased by 35% from 0.40 mSv in 2018-19 to 0.54 mSv in 2019-20. The maximum CED from LLα increased by 16.3% from 3.20 mSv in 2018-19 to 3.72 mSv in 2019-20. The authors consider that, in the absence of other explanations provided by the REs, the increase is largely attributable to the revised DC’s published in ICRP-137 and ICRP-141, but highlight that there are significant variations between REs that make a generalised conclusion problematic. The maximum reported ED in 2019-20 was 6.0 mSv, an increase of 36.4% from 2018-19 (4.4 mSv). The 2019-20 reporting period is the first time in a decade in which mine worker EDs have been elevated to the point that EDs have exceeded 5 mSv, a level at which personal monitoring and additional institutional controls are required.


2017 ◽  
Vol 14 (3) ◽  
pp. 619-624
Author(s):  
Baghdad Science Journal

In this research the specific activity of natural radionuclides 226Ra, 232Th and 40K were determined by sodium iodide enhanced by thallium NaI(TI) detector and assessed the annual effective dose in Dielac 1 and 2 and Nactalia 1 and 2 for children of less than 1 year which are available in Baghdad markets. The specific activity of 40K has the greater value in all the types which is in the range of allowed levels globally that suggested by UNSCEAR. The mean value of annual effective doses were 2.92, 4.005 and 1.6325 mSv/y for 226Ra, 232Th and 40K respectively.


2020 ◽  
Vol 189 (3) ◽  
pp. 318-322
Author(s):  
Ritva Bly ◽  
Hannu Järvinen ◽  
Sampsa Kaijaluoto ◽  
Verneri Ruonala

Abstract Contemporary collective effective doses to the population from x-ray and nuclear medicine examinations in Finland in 2018 was estimated. The estimated effective dose per caput from x-ray examinations increased from year 2008 to 2018 respectively from 0.45 mSv to 0.72 mSv and from nuclear medicine examinations from 0.03 mSv to 0.04 mSv. The proportional dose due to CT examinations of the total collective effective dose from all x-ray examinations increased from 58% in 2008 to 70% in 2018 and the dose did not change substantially in total when new conversion factors were applied. The collective effective dose from conventional plain radiography did not change substantially during the last ten years while the new (ICRP 103) tissue weighting factors were taken into use in 2018, however frequencies of examinations in total decreased. The collective effective dose from CT in nuclear medicine tripled between 2009 and 2018.


Sign in / Sign up

Export Citation Format

Share Document