scholarly journals Synthesis, characterization and photo-Fenton catalytic activity of magnetic CuFe2O4/Fe2O3 materials

Author(s):  
Van Hung Phan ◽  
Thu Uyen Tran Thi ◽  
Tien Khoa Le

In this work, we proposed to immobilize Fe2O3 nanoparticles on the surface of magnetic CuFe2O4 particles by a facile impregnation – annealing method at different annealing temperatures (200, 300, 400 and 500°C) in order to create new heterogeneous photo-Fenton catalysts with enhanced catalytic performance for the oxidation of organic dyes. The influences of annealing temperatures used in the synthesis procedure on the phase composition, the morphology, the particle size and the surface functional groups of our catalysts were investigated by XRD, FE-SEM and FTIR techniques, respectively. The photo-Fenton catalytic performance was evaluated by the degradation of methylene blue under both UVA and visible light illumination in the presence of H2C2O4 as radical-producing source. According to the experimental results, Fe2O3 nanoparticles were successfully coated on CuFe2O4 surface, which successfully formed the α-Fe2O3 phase in the phase composition and also increased the Fe3+ content on the surface. As a consequence, the rate constant of photo-Fenton catalytic degradation of methylene blue over these samples were clearly improved. More especially, owing to the good magnetic property of CuFe2O4 component, our CuFe2O4/Fe2O3 samples were easy to be separated from the solution by a magnet, making them more feasible in practical applications of environmental treatment. Among our catalytic samples, the CuFe2O4/Fe2O3 sample annealed at 300°C showed the best performance with the highest rate constants under both UVA light and visible light. Its catalytic activities was found to be 6.8 times higher than CuFe2O4 under UVA light and 2.1 times higher than CuFe2O4 under visible light. However, when the annealing temperature was up to 500°C, the catalytic activity was reduced, which can be explained by the growth of particles and the stabilization of surface Fe-O bonds.

2012 ◽  
Vol 463-464 ◽  
pp. 189-193
Author(s):  
Kong Zhai Li ◽  
Masaaki Haneda ◽  
Masakuni Ozawa

Maghemite (γ-FeSubscript text2OSubscript text3) and hematite (α-Fe2O3) nanoparticles with various dominant exposure crystal planes were prepared by several different methods. The structure and the reducibility of these materials were investigated by XRD, Raman and H2-TPR technologies, and their catalytic performance for propene oxidation was also discussed. The maghemite (γ-FeSubscript text2OSubscript text3) showed a better reducibility than hematite (α-FeSubscript text2OSubscript text3), but its activity for propene oxidation is relatively lower. The exposure crystal plane of hematite has a significant influence on its catalytic activity for propene oxidation. Among the prepared four samples, the hematite-1 sample showed the best activity. The selective growth of any planes with a relative low density of Fe atoms for the α-FeSubscript text2OSubscript text3 catalyst would lead to an obvious decrease in the catalytic activity.


2013 ◽  
Vol 25 (10) ◽  
pp. 2138-2149 ◽  
Author(s):  
Zhenxuan Zhao ◽  
Hongxing Dai ◽  
Jiguang Deng ◽  
Yuxi Liu ◽  
Yuan Wang ◽  
...  

2012 ◽  
Vol 11 (05) ◽  
pp. 1250030 ◽  
Author(s):  
TESHOME ABDO SEGNE ◽  
SIVA RAO TIRUKKOVALLURI ◽  
SUBRAHMANYAM CHALLAPALLI

The advantage of doping of TiO2 with copper has been utilized for enhanced degradation of pesticide under visible light irradiation. The sol–gel method has been undertaken for the synthesis of copper-doped TiO2 by varying the dopant loadings from 0.25 wt.% to 1.0 wt.% of Cu2+ . The doped samples were characterized by UV-Visible Diffuse Reflectance Spectroscopy (DRS), N2 adsorption–desorption (BET), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectrometry (EDS). The photocatalytic activity of the catalyst was tested by degradation of dichlorvos under visible light illumination. The results found that 0.75 wt.% of Cu2+ doped nanocatalysts have better photo catalytic activity than the rest of percentages doped, undoped TiO2 and Degussa P25. The reduction of band gap was estimated and the influence of the process parameters on photo catalytic activity of the catalyst has been explained.


CrystEngComm ◽  
2014 ◽  
Vol 16 (48) ◽  
pp. 10943-10948 ◽  
Author(s):  
Juan Li ◽  
Jian Yan ◽  
Chengzhan Liu ◽  
Lihong Dong ◽  
Hui Lv ◽  
...  

A ternary composite ZnO–Ag–polypyrrole was synthesized through a fast reaction between zinc acetate and hexamethylenetetramine followed by an in situ surface polymerization process. The sample exhibited a superior catalytic performance in the degradation of methylene blue under both UV irradiation and visible light.


2016 ◽  
Vol 864 ◽  
pp. 117-122 ◽  
Author(s):  
Hesni Shabrany ◽  
Hendry Tju ◽  
Ardiansyah Taufik ◽  
Rosari Saleh

This paper discusses the catalytic activity of ZnO/CuO/nanographene platelets composites under visible light and ultrasound irradiation separately. The ZnO/CuO/nanographene platelets composites were synthesized using a sol-gel method. X-ray diffraction and nitrogen adsorption spectroscopy were employed to investigate the structural and surface area of the catalyst. The catalytic activity results showed that the presence of nanographene platelets in ZnO/CuO nanocomposites improved its efficiency in degrading methylene blue. A scavenger method was also used to understand the role of charged carriers and the active radical involved in the catalytic activity.


2020 ◽  
Author(s):  
Chukwunonso Onyenanu ◽  
Lovet Emembolu

Abstract Photocatalytic activity of the natural semiconducting sphalerite mineral from Abuni, Nasarawa State, Nigeria was studied for the degradation of methylene blue (MB). Natural Sphalerite as a visible – light responsive photocatalyst was characterized by X ray diffraction (XRD), X ray fluorescence (XRF) and surface area analysis. To further enhance the photocatalytic activity of natural Sphalerite, the chemical composition of the sphalerite was varied via leaching with oxalic acids. The photocatalytic activity of the Natural sphalerite, leached sphalerite and as well as the calcined leachates was tested for MB degradation under visible light illumination. The result shows a very high percentage of MB degradation by natural sphalerite after 60mintues of light irradiation time. A composite of ZnO -α –Fe2O3 -ϒ-Fe2O3 with traces amount of MoO and MnO2 was synthesized by calcination of the obtained leachates at 1000°C for 4hours. The photocatalytic degradation of methylene blue dye follows pseudo first order kinetics.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 297 ◽  
Author(s):  
Kamal Prasad Sapkota ◽  
Insup Lee ◽  
Md. Abu Hanif ◽  
Md. Akherul Islam ◽  
Jeasmin Akter ◽  
...  

We report enhanced catalytic action of a series of copper(II)-oxide-single-walled carbon nanotube (CuO-SWCNT) composite photocatalysts (abbreviated as CuO-SWCNT-0.5, CuO-SWCNT-2, and CuO-SWCNT-5, where 0.5, 2, and 5 represent the calcination time in hours) synthesized via recrystallization followed by calcination. The photocatalytic performance of the fabricated nanocomposites was examined by evaluating the degradation of methylene blue (MB) under irradiation with visible light. All of the as-fabricated nanocomposites were effective photocatalysts for the photodegradation of a MB solution; however, the CuO-SWCNT-5 displayed the best photocatalytic ability among the investigated catalysts, achieving 97.33% degradation of MB in 2 h under visible-light irradiation. The photocatalytic action of the nanocomposites was remarkably higher than that of pristine CuO nanocrystals fabricated using the same route. The recyclability of the photocatalyst was also investigated; the CuO-SWCNT-5 catalyst could be reused for three cycles without substantial degradation of its catalytic performance or morphology.


2021 ◽  
Vol 891 ◽  
pp. 62-67
Author(s):  
Maradhana Agung Marsudi ◽  
Fakhri Arsyi Hawari ◽  
Ade Wahyu Y.P. Parmita ◽  
Untung Triadhi ◽  
Husaini Ardy ◽  
...  

Heterogeneous fenton , although offering promises for large scale wastewater treatment, is still hindered in its practicality due to its modest catalytic activity. The usage of catalyst supportas been demonstrated previously toecrease the overall particle size to improve its catalytic performance. In this demonstration, fenton catalysts were prepared using the sol-gel method and bacterial cellulose (BC) as catalyst support, with varying sodium hydroxide (NaOH) concentrations (0.01; 0.1 and 1 M). NaCl impurities' presence was successfully eliminated by reducing NaOH concentration relative to the previous 4 M concentration. Lower NaOH concentration leads to a more favorable condition for the formation of smaller non-agglomerated particles and magnetite (Fe3O4) as its main crystalline phase. It was found that the best performing catalyst was produced using 1 M NaOH and was able to degrade Methylene blue solution up to 53.8% remaining dye concentration within two hours.


RSC Advances ◽  
2016 ◽  
Vol 6 (53) ◽  
pp. 47907-47911 ◽  
Author(s):  
Anna Klinkova ◽  
Aftab Ahmed ◽  
Rachelle M. Choueiri ◽  
Jeffery R. Guest ◽  
Eugenia Kumacheva

We report plasmonically mediated enhancement of catalytic performance of different Pd-based nanoparticles. Our findings pave the way for design, synthesis and fabrication of Pd nanocatalysts with enhanced performance under visible light illumination.


Sign in / Sign up

Export Citation Format

Share Document