scholarly journals Effect of Oxalic Acid Leaching on Photocatalytic Activity of Natural Sphalerite

Author(s):  
Chukwunonso Onyenanu ◽  
Lovet Emembolu

Abstract Photocatalytic activity of the natural semiconducting sphalerite mineral from Abuni, Nasarawa State, Nigeria was studied for the degradation of methylene blue (MB). Natural Sphalerite as a visible – light responsive photocatalyst was characterized by X ray diffraction (XRD), X ray fluorescence (XRF) and surface area analysis. To further enhance the photocatalytic activity of natural Sphalerite, the chemical composition of the sphalerite was varied via leaching with oxalic acids. The photocatalytic activity of the Natural sphalerite, leached sphalerite and as well as the calcined leachates was tested for MB degradation under visible light illumination. The result shows a very high percentage of MB degradation by natural sphalerite after 60mintues of light irradiation time. A composite of ZnO -α –Fe2O3 -ϒ-Fe2O3 with traces amount of MoO and MnO2 was synthesized by calcination of the obtained leachates at 1000°C for 4hours. The photocatalytic degradation of methylene blue dye follows pseudo first order kinetics.

2021 ◽  
Vol 9 (4) ◽  
pp. 167
Author(s):  
Ulfa Farizka Hidayati ◽  
Anthoni B. Aritonang ◽  
Lia Destiarti

Titanium dioxide-reduced graphene oxide (TiO2-rGO) was synthesized by hydrothermal method using TiO2 powder and rGO precursor from graphite rod by modified Marcano Method. The obtained TiO2-rGO photocatalyst was characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), and Diffuse reflectance UV (DRUV). Based on XRD diffractogram, it is known that TiO2 has an anatase crystal phase. In the FTIR spectrum, it was observed that there was an absorption peak at the wavenumber of 1630 cm-1 from the vibration (C=C) as an indication that the C atom was incorporated into the TiO2 structure. The incorporation of C atoms into the TiO2 structure to form TiO2-rGO causes the bandgap energy to decrease from 3.29 eV to 3.20 eV. The photocatalytic activity was tested against decolorization of methylene blue solution for 180 minutes under visible light illumination from a 50 watt LED lamp. Every 10 minutes, absorbance was measured using a UV-Vis spectrophotometer at a wavelength of 664 nm. TiO2-rGO photocatalyst has better photocatalytic activity with %D of 96.39% under UV light and 84.32% under visible light illumination, while TiO2 is only able to degrade 93.87% and 36.55%, respectively.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1985
Author(s):  
Irina Plesco ◽  
Vladimir Ciobanu ◽  
Tudor Braniste ◽  
Veaceslav Ursaki ◽  
Florian Rasch ◽  
...  

A new type of photocatalyst is proposed on the basis of aero-β-Ga2O3, which is a material constructed from a network of interconnected tetrapods with arms in the form of microtubes with nanometric walls. The aero-Ga2O3 material is obtained by annealing of aero-GaN fabricated by epitaxial growth on ZnO microtetrapods. The hybrid structures composed of aero-Ga2O3 functionalized with Au or Pt nanodots were tested for the photocatalytic degradation of methylene blue dye under UV or visible light illumination. The functionalization of aero-Ga2O3 with noble metals results in the enhancement of the photocatalytic performances of bare material, reaching the performances inherent to ZnO while gaining the advantage of the increased chemical stability. The mechanisms of enhancement of the photocatalytic properties by activating aero-Ga2O3 with noble metals are discussed to elucidate their potential for environmental applications.


2018 ◽  
Vol 281 ◽  
pp. 878-884
Author(s):  
Zhi Wei Zhou ◽  
Ling Fang Qiu ◽  
Xiao Bin Qiu ◽  
Shu Wang Duo

In order to enhance hole/electron separation and charge transfer in photocatalysts, the heterostructured g-C3N4/CoAPO-5 hybrids materials were synthesized via a simple grinding method and were investigated using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The optical properties of g-C3N4/CoAPO-5 hybrids materials were measured by ultraviolet-visible diffuse-reflectance spectroscopy (DRS), photoluminescence (PL) spectra and ultraviolet-visible absorption (UV-Vis) spectra. Under visible-light illumination, this work shows the heterogeneous g-C3N4/CoAPO-5 hybrids present a superior photocatalytic activity.


2011 ◽  
Vol 306-307 ◽  
pp. 1459-1463
Author(s):  
Yan Jun Xin ◽  
De Jie Cui

Wormhole-shaped F-doped TiO2/Ti photoelectrodes were prepared by microarc oxidation method in NaF solution. The morphology and structure of the photoelectrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF). It was found that F-doped TiO2/Ti photoelectrodes were porous and composed of anatase TiO2. The photocatalytic properties of F-doped TiO2/Ti photoelectrodes were investigated by photodiscoloration rate of Rhodamine B(Rh.B) under different conditions. All results showed that the photoelectrodes prepared at voltage of 160V, NaF concentration of 0.01mol/L and oxidation time of 10min have optimal photocatalytic performance. Rh.B was almost completely removed by F-doped TiO2/Ti photoelectrodes after 120min under the illumination of artificial visible light.


2020 ◽  
Vol 20 (9) ◽  
pp. 5759-5764
Author(s):  
V. Karthikeyan ◽  
G. Gnanamoorthy ◽  
P. Varun Prasath ◽  
V. Narayanan ◽  
Suresh Sagadevan ◽  
...  

Herein, we report the facile synthesis, characterization and visible-light-driven photocatalytic degradation of perforated curly Zn0.1Ni0.9O nanosheets synthesized by hydrothermal process. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies confirmed the cubic phase crystalline structure and growth of high density perforated curly Zn0.1Ni0.9O nanosheets, respectively. As a photocatalyst, using methylene blue (MB) as model pollutant, the synthesized nanosheets demonstrated a high degradation efficiency of ~76% in 60 min under visible light irradiation. The observed results suggest that the synthesized Zn0.1Ni0.9O nanosheets are attractive photocatalysts for the degradation of toxic organic waste in the water under visible light.


2013 ◽  
Vol 668 ◽  
pp. 29-32
Author(s):  
Wen Quan Cui ◽  
Shuang Long Lin ◽  
Shan Shan Ma ◽  
Li Liu ◽  
Ying Hua Liang

The composite Ag2S/K2Ti4O9 photocatalyst was synthesized via a precipitation method. The structure of the photocatalyst was determined by powder X-ray diffraction, scanning electron microscope. The photocatalytic properties for organic matter degradation of the photocatalyst were examined under visible light irradiation. The results showed that, the sample which synthesized at 25°C via a precipitation route,using nitric acid silver and thiourea as the raw materials in the absence of any surfactants or templates has the highest crystallinity and investigated its catalytic behavior. RhB as degradation object, different dosing quantity of the degradation rate were examined, The best dosing quantity (1000 MgL-1) degradation rate was 18.93%. And with K2Ti4O9 for ontology, the degradation of different load rate were examined, The best load (25%) of the degradation rate is 20.57%. The results revealed the Ag2S potential applications in photocatalytic degradation for organic pollutants.


2021 ◽  
Author(s):  
Govindhan Gnanamoorthy ◽  
Virendra Kumar Yadav ◽  
Krishna Yadav ◽  
Kandasamy Ramar ◽  
Javed Alam ◽  
...  

Abstract The acid-mediated (Oxalic acid [OXA], Cinnamic acid [CA], and itaconic acid [IA]) SnO2 nanorods were synthesized by the hydrothermal method. The synthesized SnO2 nanorods, in turn, were analyzed with various physic-chemical techniques such as the X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), scanning electron microscope (SEM), and Raman spectroscopy. Furthermore, the photocatalytic activity of the different SnO2 nanorods was investigated with the malachite green (MG) dye under visible light illumination. The OXA-SnO2 nanorods displayed an excellent degradation performance with observed values of 91% compared to other nanomaterials’ (CA and IA-SnO2) photocatalytic activity. The different synthesized SnO2 materials were tested for antibacterial and antifungal studies; this result may be used or developed in future research activities.


2020 ◽  
Vol 20 (12) ◽  
pp. 7716-7723
Author(s):  
Qazi Inamur Rahman ◽  
Arif Ali ◽  
Naseem Ahmad ◽  
Minaxi B. Lohani ◽  
S. K. Mehta ◽  
...  

Here, we report simple and efficient method to synthesize CuO rods using copper acetate, hexamethylenetetramine (HMTA) and sodium hydroxide (NaOH) solutions via hydrothermal process followed by calcination. The Field emission scanning electron microscopy images revealed that synthesized CuO rods were 2–4μm thick with several micrometers long and grown into high density. The as-synthesized CuO rods were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy and Energy dispersive X-ray analysis (EDS) which confirmed the formation of highly crystalline, single phase pure CuO rods with monoclinic structures. The photocatalytic capability of synthesized CuO rods was executed by monitoring the degradation of methylene blue (MB) dye under visible light illumination. The results showed MB dye degraded about ~70% in just 100 min and followed first order reaction kinetics with rate constant k = 0.01123 mint.1 and R2 = 0.9880.


2011 ◽  
Vol 335-336 ◽  
pp. 1508-1511
Author(s):  
Shu Kai Zheng

Transparent TiO2 thin films were deposited onto microscope glass slides by means of d.c. magnetron sputtering method. In order to enhance the photocatalytic activity of TiO2 thin films, Mo ions with different nominal doses were implanted into the TiO2 thin films. The samples were characterized by different technologies including X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS) and UV-VIS-NIR spectrophotometer. The photodegradation results of methylene blue dye solution indicated that optimal dose of 2×1012ions/cm2 Mo ion-implantation resulted in a higher photocatalytic activity in the implanted TiO2 thin films.


Sign in / Sign up

Export Citation Format

Share Document