scholarly journals IDENTIFICATION AQUIFER PARAMETERS THROUGH SINGLE WELL PUMPING TEST SERIES AT PT. KALTIM KARIANGAU TERMINAL, BALIKPAPAN, EAST KALIMANTAN

2019 ◽  
Vol 3 (2) ◽  
pp. 293
Author(s):  
Totok Sulistyo

Aquifer Parameters are very important in groundwater and well management. The objective of this research is to determine aquifer parameter in order to be used in determining suitable production rate of well. Research was carried out in PT. Kaltim Kariangau Terminal, which is administratively, located in Balikpapan City, East Kalimantan, Indonesia. PT. Kaltim Kariangau Terminal has developed four wells with distance of each of well is between 50 and 300 meters, but it is a pity because just one well was completed by pumping test without observation well. Result of constant pumping test analyzing through Cooper – Jacob method has shown that value of Transmissivity (T) of aquifer is 319.0718283 m2/day, and it is known from geophysical logging and well construction design that the thickness of aquifer is 48 m, so hydraulic conductivity (K) of aquifer is 6.6473 m/day. Coefficient of aquifer loss is 0.0013 and coefficient of well loss is 0.0000008. Factors development of well could be classified as very effective with the well condition is properly designed and developed.

2016 ◽  
Vol 12 (2) ◽  
pp. 9-20 ◽  
Author(s):  
Khider Mawlood Dana ◽  
Sabah Mustafa Jwan

Abstract Single well test is more common than aquifer test with having observation well, since the advantage of single well test is that the pumping test can be conducted on the production well with the absence of observation well. A kind of single well test, which is step-drawdown test used to determine the efficiency and specific capacity of the well, however in case of single well test it is possible to estimate Transmissivity, but the other parameter which is Storativity is overestimated, so the aim of this study is to analyze four pumping test data located in KAWRGOSK area by using cooper-Jacob’s (1946) time drawdown approximation of Theis method to estimate the aquifer parameters, also in order to determine the reasons which are affecting the reliability of the Storativity value and obtain the important aspect behind that in practice.


2014 ◽  
Vol 931-932 ◽  
pp. 823-828 ◽  
Author(s):  
Thidarat Cotanont ◽  
Chalong Buaphan ◽  
Kamonporn Kromkhun

Fractured rock aquifers provide the most extensive groundwater resources in Northeast Thailand. The hydraulic conductivity (K) of these aquifers controls the flow of water and is therefore, an essential parameter for groundwater modeling and management. K values may be directly determined by conducting pumping tests at the aquifer or by performing fracture analysis using data acquired from outcrops. The K value at outcrop should be greater than that at aquifer of deeper position due to the effect of aperture reduction by overburden compression. The goal of this study was therefor to find the correlation between K values determined from outcrop with those directly measured at an aquifer. This study was conducted on the Phu Phan sandstone aquifer at the Huay Luang watershed, Udon Thani Province of Northeast Thailand. The orientation, aperture, and spacing of fractures were measured at four outcrops and used for determining the K values by fracture analysis. Single well pump test data from 17 wells in the Phu Phan aquifer (30-120 m depth) were analyzed to obtain transmissivity (T) and K. Both sets of the K values, from outcrop and aquifer, were correlated using the plotting position of Weibull. Both plots were linear on a semi-log scale but the outcrop curve was steeper. Lognormal distributions fitted both plotting positions quite well. These results show that for the same probability value, K values found from the pumping test to be about an order of magnitude smaller than K values determined from outcrop data.


2021 ◽  
Author(s):  
Tahereh Azari ◽  
Mahmoud Mohammad Rezapour Tabari

Abstract Accurate determination of hydraulic parameter values is the first step to the sustainable development of an aquifer. Since Theis (1935), type curve matching technique (TCMT) has been used to estimate the aquifer parameters from pumping test data. The TCMT is subjected to graphical error. To eliminate the error an Artificial Neural Network (ANN) is developed as an alternative to the conventional TCMT by modeling the Bourdet-Gringaten’s well function for the determination of the fractured double porosity aquifer parameters. The neural network model is developed in a six-step protocol based on multi-layer perceptron (MLP) networks architecture and is trained for the well function of double porosity aquifers by the back propagation method and the Levenberg-Marquardt optimization algorithm. By applying the principal component analysis on the training input data and through a trial-and-error procedure the optimum structure of the network is fixed with the topology of [3×6×3]. The replicative, predictive and structural validity of the developed network are evaluated with synthetic and real field data. The developed network provides an automatic and fast procedure for the double porosity aquifer parameter determination that eliminates graphical errors inherent in the conventional TCMT. The network receives pumping test data and provides the user with the aquifer parameter values.


1977 ◽  
Vol 8 (2) ◽  
pp. 103-116 ◽  
Author(s):  
Leif Carlsson ◽  
Anders Carlstedt

Statistical analysis of pumping-test data from wells have been used to calculate average values of transmissivity and permeability in different Swedish rocks. The influence of the well-loss on the calculations is discussed. The highest values of transmissivity and permeability of the investigated rocks are found in the sandstones of Algonkian and Cambrian age. The Archean crystalline rocks show a wide range of results, and of the investigated rocks the gneisses seem to be more permeable than the granites. However, the degree of tectonization affects the hydraulic properties of the rocks considerably.


2020 ◽  
Vol 28 (8) ◽  
pp. 2657-2674
Author(s):  
Markus Theel ◽  
Peter Huggenberger ◽  
Kai Zosseder

AbstractThe favorable overall conditions for the utilization of groundwater in fluvioglacial aquifers are impacted by significant heterogeneity in the hydraulic conductivity, which is related to small-scale facies changes. Knowledge of the spatial distribution of hydraulically relevant hydrofacies types (HF-types), derived by sedimentological analysis, helps to determine the hydraulic conductivity distribution and thus contribute to understanding the hydraulic dynamics in fluvioglacial aquifers. In particular, the HF-type “open framework gravel (OW)”, which occurs with the HF-type “bimodal gravel (BM)” in BM/OW couplings, has an intrinsically high hydraulic conductivity and significantly impacts hydrogeological challenges such as planning excavation-pit drainage or the prognosis of plumes. The present study investigates the properties and spatial occurrence of HF-types in fluvioglacial deposits at regional scale to derive spatial distribution trends of HF-types, by analyzing 12 gravel pits in the Munich gravel plain (southern Germany) as analogues for outwash plains. The results are compared to the reevaluation of 542 pumping tests. Analysis of the HF-types and the pumping test data shows similar small-scale heterogeneities of the hydraulic conductivity, superimposing large-scale trends. High-permeability BM/OW couples and their dependence on recognizable discharge types in the sedimentary deposits explain sharp-bounded small-scale heterogeneities in the hydraulic conductivity distribution from 9.1 × 10−3 to 2.2 × 10−4 m/s. It is also shown that high values of hydraulic conductivity can be interpolated on shorter distance compared to lower values. While the results of the HF-analysis can be transferred to other fluvioglacial settings (e.g. braided rivers), regional trends must be examined with respect to the surrounding topography.


2015 ◽  
Vol 802 ◽  
pp. 634-639 ◽  
Author(s):  
Mohd Nordin Adlan ◽  
Mohamad Razip Selamat ◽  
Siti Zahirah Othman

For a developing country such as Malaysia, riverbank/bed filtration (RBF) technology is still new and only few efforts have been made to understand the RBF mechanism and processes. Soil characteristics play important roles in determining the water quality and the ability of water to be abstracted from the wells during RBF process. A research has been carried out to identify the characteristic of riverbank soil at different layers in the pumping well (PW) borehole at Kota Lama Kiri, Kuala Kangsar, Perak, Malaysia. Soil samples were collected during the development of PW for RBF application. The maximum depth of PW was 8.50 metre. The soil samples were transported to Geotechnical Engineering Laboratory, School of Civil Engineering, Universiti Sains Malaysia and the properties were determined by a series of laboratory test. Soil particle size distribution (PSD) and hydraulic conductivity were obtained from sieve analyses and constant head test with reference to BS 1377: Part 1-9;2:1990. Laboratory results show that the value of Cu(coefficient of uniformity) for the soil samples within the borehole of PW was found to be within the range of 2.00 to 10.00 while the value of Cc(coefficient of gradation) lies in the ranges of 0.06-1.19. The One Way Analyses of Variance test was performed using Minitab statistical packages and the results indicate that the p-value was 0.996, where there was no significance difference between the mean sizes of soil samples within the PW. The hydraulic conductivity, k for PW ranges between 0.10-0.91 cm/s. Soil samples from depth 6.00-7.00 metres has the highest hydraulic conductivity, which is 0.91 cm/s. The overall well production from the pumping test was found 112.10 m3/hr.


Géotechnique ◽  
2012 ◽  
Vol 62 (3) ◽  
pp. 253-262 ◽  
Author(s):  
T. KOBAYASHI ◽  
H. ONOUE ◽  
S. OBA ◽  
N. YASUFUKU ◽  
K. OMINE

Sign in / Sign up

Export Citation Format

Share Document