scholarly journals Estimation of Transmissivity and Permeability in Swedish Bedrock

1977 ◽  
Vol 8 (2) ◽  
pp. 103-116 ◽  
Author(s):  
Leif Carlsson ◽  
Anders Carlstedt

Statistical analysis of pumping-test data from wells have been used to calculate average values of transmissivity and permeability in different Swedish rocks. The influence of the well-loss on the calculations is discussed. The highest values of transmissivity and permeability of the investigated rocks are found in the sandstones of Algonkian and Cambrian age. The Archean crystalline rocks show a wide range of results, and of the investigated rocks the gneisses seem to be more permeable than the granites. However, the degree of tectonization affects the hydraulic properties of the rocks considerably.

1985 ◽  
Vol 4 ◽  
pp. 1-98
Author(s):  
Bjarne Madsen

This paper presents a computer program for analysing pumping test data. The program is interactive and may be used with a minimum knowledge of computers. It can be applied to a wide range of transient problem types, from one dimensional groundwater flow to flow in anisotropic aquifers, horizontally as well as vertically. Various forms of type curves based on analytical solutions to the groundwater flow equation are available for the interpretation. The paper includes a listing of the entire computer program containing a total of about 1. 800 lines. The programming language is a BASIC-version suited for the Tektronix 4054, a graphic screen with a refresh option. This option allows the user to perform type curve matching directly on the screen by moving the chosen type curve to the position where it gives the best fit, in a manner similar to traditional manual chart interpretation. Plots of the measured data may be conveniently reproduced in semilog and log-log diagrams, either on the screen or as a hard copy printed by a plotter. The present version of the program makes use of tape cartridges, both for storing program and data files.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 421
Author(s):  
Dariusz Puchala ◽  
Kamil Stokfiszewski ◽  
Mykhaylo Yatsymirskyy

In this paper, the authors analyze in more details an image encryption scheme, proposed by the authors in their earlier work, which preserves input image statistics and can be used in connection with the JPEG compression standard. The image encryption process takes advantage of fast linear transforms parametrized with private keys and is carried out prior to the compression stage in a way that does not alter those statistical characteristics of the input image that are crucial from the point of view of the subsequent compression. This feature makes the encryption process transparent to the compression stage and enables the JPEG algorithm to maintain its full compression capabilities even though it operates on the encrypted image data. The main advantage of the considered approach is the fact that the JPEG algorithm can be used without any modifications as a part of the encrypt-then-compress image processing framework. The paper includes a detailed mathematical model of the examined scheme allowing for theoretical analysis of the impact of the image encryption step on the effectiveness of the compression process. The combinatorial and statistical analysis of the encryption process is also included and it allows to evaluate its cryptographic strength. In addition, the paper considers several practical use-case scenarios with different characteristics of the compression and encryption stages. The final part of the paper contains the additional results of the experimental studies regarding general effectiveness of the presented scheme. The results show that for a wide range of compression ratios the considered scheme performs comparably to the JPEG algorithm alone, that is, without the encryption stage, in terms of the quality measures of reconstructed images. Moreover, the results of statistical analysis as well as those obtained with generally approved quality measures of image cryptographic systems, prove high strength and efficiency of the scheme’s encryption stage.


2015 ◽  
Vol 712 ◽  
pp. 63-68
Author(s):  
Przemysław Osocha ◽  
Bohdan Węglowski

In some coal-fired power plants, pipeline elements have worked for over 200 000 hours and increased number of failures is observed. The paper discuses thermal wear processes that take place in those elements and lead to rupture. Mathematical model based on creep test data, and describing creep processes for analyzed material, has been developed. Model has been verified for pipeline operating temperature, lower than tests temperature, basing on Larson-Miller relation. Prepared model has been used for thermal-strength calculations based on a finite element method. Processes taking place inside of element and leading to its failure has been described. Than, basing on prepared mathematical creep model and FE model introduced to Ansys program further researches are made. Analysis of dimensions and shape of pipe junction and its influence on operational element lifetime is presented. In the end multi variable dependence of temperature, steam pressure and element geometry is shown, allowing optimization of process parameters in function of required operational time or maximization of steam parameters. The article presents wide range of methods. The creep test data were recalculated for operational temperature using Larson-Miller parameter. The creep strain were modelled, used equations and their parameters are presented. Analysis of errors were conducted. Geometry of failing pipe junction was introduced to the Ansys program and the finite element analysis of creep process were conducted.


1985 ◽  
Vol 25 (3) ◽  
pp. 127-132 ◽  
Author(s):  
Takeshi Sato ◽  
Kano Ueshita
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document