scholarly journals Effects of Climate Variability on the Annual and Intra-annual Ring Formation of Pinus merkusii growing in Central Thailand

2020 ◽  
Vol 18 (3) ◽  
pp. 234-248
Author(s):  
Nathsuda Pumijumnong ◽  
◽  
Kritsadapan Palakit ◽  
Author(s):  
Marina V. Fonti ◽  
Elena A. Babushkina ◽  
Dina F. Zhirnova ◽  
Eugene A. Vaganov

Tree-ring formation studies are important for assessing the impact of environmental factors on tree growth at intra-seasonal resolution. This information is necessary for understanding plant acclimatization to current and expected climate changes. Little is still known about how tree age may affect the duration and rate of annual ring formation. In this study, we investigated tree-ring formation in Scots pine (Pinus sylvestris L.) trees of different ages (30- and 95-year-old trees) from the foreststeppe zone in Southern Siberia. The main objectives were 1) to estimate the timing of cambial activity by distinguishing the phases of division, enlargement, wall thickening, and maturation of tracheids and 2) to compare the anatomical structure of the tracheids forming the annual rings of the differently aged trees. Stem tissue was sampled weekly from April to September 2014. The results showed a 1-2 week difference in duration of the phases of xylem formation between the groups; in addition, the ring width of the young trees was slightly narrower. The size of the tracheids of the entirely formed ring (i.e. the results of the enlargement phase) did not differ between the groups whereas the dynamics of the cell-wall thickness showed significant differences. The data obtained in the present study can provide references to calibrate process-based models linking environment to wood formation. These data can be used to benchmark time-explicit simulated measurements of annual ring increment and cell anatomical structure against the corresponding parameters of mature trees growing under natural conditions


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Yoshio Kijidani ◽  
Taku Tsuyama ◽  
Katsuhiko Takata

AbstractWe previously reported the species-specific annual ring formation characteristics of three conifers (slash pine (Pinus elliottii), hinoki (Japanese cypress, Chamaecyparis obtusa) and sugi (Japanese cedar, Cryptomeria japonica)) grown in the same stand over 2 years. We found that the species-specific annual ring formation characteristics affected the inherent difference in wood density among these conifers (slash pine > hinoki > sugi). Plant hormones in cambial-region tissues were believed to affect annual ring formation. However, seasonal variation of the amounts of plant hormones in cambial-region tissues had only been examined in a few tree species. In this study, as the first step to elucidating the role of plant hormones in annual ring formation in conifers, we report the seasonal variations of the auxin (indole acetic acid, IAA) and gibberellin A4 (GA4) levels in cambial-region tissues and their effects on annual ring formation in three conifers (slash pine, hinoki, and sugi) with inherently different wood densities.Sugi (small wood density) had significantly higher levels of IAA and formed more tracheids in the early season than in the late season, although slash pine (large wood density) had higher levels of IAA and formed significantly more tracheids in the late season than in the early season. Hinoki (intermediate wood density) had constant IAA levels and formed a constant number of tracheids throughout the season. There were significant positive correlations between the levels of IAA in cambial-region tissues and the number of tracheids formed during late season in the two conifer species. A close relationship was observed between the seasonal ratio of the IAA levels (late/early season) and wood density. No consistent trend in the change in the level of IAA during the transition from earlywood to latewood formation was recognized among the three conifers. The IAA levels in slash pines were significantly higher than those in sugi and hinoki. The GA4 levels had no significant effect on number of tracheids formed in the three conifers. These results suggest that the species-specific seasonal variation patterns of the IAA levels might lead to the inherent differences in wood density among these three conifers through species-specific characteristics in the formation of annual rings.


2011 ◽  
Vol 57 (6) ◽  
pp. 340-349 ◽  
Author(s):  
Yoshio Kijidani ◽  
Katsuhiko Takata ◽  
Satoshi Ito ◽  
Masako Ogawa ◽  
Masanori Nagamine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document