scholarly journals Seasonal variations of auxin and gibberellin A4 levels in cambial-region tissues of three conifers (Pinus elliottii, Chamaecyparis obtusa, and Cryptomeria japonica) with inherently different wood densities

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Yoshio Kijidani ◽  
Taku Tsuyama ◽  
Katsuhiko Takata

AbstractWe previously reported the species-specific annual ring formation characteristics of three conifers (slash pine (Pinus elliottii), hinoki (Japanese cypress, Chamaecyparis obtusa) and sugi (Japanese cedar, Cryptomeria japonica)) grown in the same stand over 2 years. We found that the species-specific annual ring formation characteristics affected the inherent difference in wood density among these conifers (slash pine > hinoki > sugi). Plant hormones in cambial-region tissues were believed to affect annual ring formation. However, seasonal variation of the amounts of plant hormones in cambial-region tissues had only been examined in a few tree species. In this study, as the first step to elucidating the role of plant hormones in annual ring formation in conifers, we report the seasonal variations of the auxin (indole acetic acid, IAA) and gibberellin A4 (GA4) levels in cambial-region tissues and their effects on annual ring formation in three conifers (slash pine, hinoki, and sugi) with inherently different wood densities.Sugi (small wood density) had significantly higher levels of IAA and formed more tracheids in the early season than in the late season, although slash pine (large wood density) had higher levels of IAA and formed significantly more tracheids in the late season than in the early season. Hinoki (intermediate wood density) had constant IAA levels and formed a constant number of tracheids throughout the season. There were significant positive correlations between the levels of IAA in cambial-region tissues and the number of tracheids formed during late season in the two conifer species. A close relationship was observed between the seasonal ratio of the IAA levels (late/early season) and wood density. No consistent trend in the change in the level of IAA during the transition from earlywood to latewood formation was recognized among the three conifers. The IAA levels in slash pines were significantly higher than those in sugi and hinoki. The GA4 levels had no significant effect on number of tracheids formed in the three conifers. These results suggest that the species-specific seasonal variation patterns of the IAA levels might lead to the inherent differences in wood density among these three conifers through species-specific characteristics in the formation of annual rings.

2011 ◽  
Vol 57 (6) ◽  
pp. 340-349 ◽  
Author(s):  
Yoshio Kijidani ◽  
Katsuhiko Takata ◽  
Satoshi Ito ◽  
Masako Ogawa ◽  
Masanori Nagamine ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 493 ◽  
Author(s):  
Yanjie Li ◽  
Xianyin Ding ◽  
Jingmin Jiang ◽  
Qifu Luan

Slash pine (Pinus elliottii) is the most important and a fast-growing material that is used for industrial timber and pulp production. A breeding program of slash pine that aims to improve wood properties has been employed for the past decade. This study analysed the genetics and correlation of growth traits and wood properties of a total of 1059 individual plants from 49 families of P. elliottii. Heritability, family ranking, genetic gain, and the relationship between these traits were estimated. The results showed that there was a significant negative genetic correlation between the holocellulose and lignin content. The heritabilities of these four traits were ranked from 0.18 to 0.32. The chemical wood traits did not show a strong correlation with diameter at breast height (DBH) and wood density. However, it is still possible to combine wood traits for selection. It was suggested that the genetic breeding selection could improve the growth and quality of P. elliottii.


2021 ◽  
Author(s):  
Elizabeth J Messick ◽  
Christopher E Comer ◽  
Michael A Blazier ◽  
T Bently Wigley

Abstract In the southern United States, some landowners have established plantations of eucalyptus (Eucalyptus spp.) and are managing them on short rotations (<15 years) to provide wood for fiber and other potential uses. Establishment of short-rotation woody crops dominated by nonnative species has implications for resident fauna in the United States that are largely unknown. We compared avifauna abundance, diversity, and community composition in newly established Camden white gum (Eucalyptus benthamii) plantations with slash pine (Pinus elliottii) plantations of the same age and height (one to two and six to seven years old, respectively) in southwestern Louisiana, USA. Species richness, diversity, and community composition in newly established eucalyptus plantations and six- to seven-year-old pines were similar. More birds were observed, and bird detections varied less in eucalyptus plantations. Indigo buntings (Passerina cyanea) and other shrub-associated species were detected more often in eucalyptus stands. In contrast, species that inhabit herbaceous-dominated communities, such as eastern meadowlarks (Sturnella magna), or that were associated with a dense graminoid community (e.g., Bachman’s sparrow [Peucaea aestivalis]) were detected less often in eucalyptus. Overall, breeding bird communities in eucalyptus plantations one to two years postestablishment differed little from plantations dominated by slash pine. Study Implications Compared with slash pine (Pinus elliottii Englem) plantations of similar age and height (one to two years and six to seven years old, respectively) we found one- to two-year-old eucalyptus (Eucalyptus benthamii Maiden & Cambage) plantations supported similar avian species richness and diversity to six- to seven-year-old pine stands. Furthermore, we found these eucalyptus plantations (E13) supported an avian community that was intermediate to similar aged pine (S13) and pine of similar height (S08). However, avian communities will likely change as eucalyptus plantations age (Christian et al. 1997). Continued monitoring and assessment of community composition, richness, and abundance is important for determining the magnitude of this change. Future investigations focused on nest success, fecundity, postfledging monitoring, and survivorship compared with other types of planted forests and native cover types would help us better understand eucalyptus plantation effects on avifauna demographics (Van Horne 1983, Martin 1998, Jones 2001, Wood et al. 2004, Sage et al. 2006, Riffell et al. 2011).


1995 ◽  
Vol 86 (4) ◽  
pp. 289-296 ◽  
Author(s):  
R. L. Doudrick ◽  
J. S. Heslop-Harrison ◽  
C. D. Nelson ◽  
T. Schmidt ◽  
W. L. Nance ◽  
...  

IAWA Journal ◽  
1998 ◽  
Vol 19 (2) ◽  
pp. 181-189 ◽  
Author(s):  
Keiko Kuroda

Trunks of Chamaecyparis obtusa were injured to examine seasonal differences in traumatic resin canal formation in secondary phloem. Even after wounding during winter, differentiation of axial parenchyma into epithelium was initiated, and vertical resin canals formed. After winter wounding, resin canal development was slower and the tangential extent of resin canals was narrower than after spring wounding, and it took one to two months until resin secretion began. After spring wounding, the sites of resin canal formation were the 1- and 2-year-old annual rings of phloem. In August, the location of resin canal formation shifted into the current and 1-year-old annual ring. Resin canals never formed in secondary phloem areas that were 3 or more years old. In C. obtusa trunks that are affected by the resinous stem canker, numerous tangentiallines of resin canals are found throughout the phloem, not just recent and 1- to 2-year-old phloem. The present research indicates that these many lines of resin canals were not formed at one time, and that the stimuli that induce traumatic resin canals must occur repeatedly over many years. The data on artificial wounding effects are useful for understanding resinous stem canker.


2007 ◽  
Vol 37 (10) ◽  
pp. 1886-1893 ◽  
Author(s):  
Xiaobo Li ◽  
Dudley A. Huber ◽  
Gregory L. Powell ◽  
Timothy L. White ◽  
Gary F. Peter

The importance of integrating measures of juvenile corewood mechanical properties, modulus of elasticity in particular, with growth and disease resistance in tree improvement programs has increased. We investigated the utility of in-tree velocity stiffness measurements to estimate the genetic control of corewood stiffness and to select for trees with superior growth and stiffness in a progeny trial of 139 families of slash pine, Pinus elliottii Engelm. grown on six sites. Narrow-sense heritability estimates across all six sites for in-tree acoustic velocity stiffness at 8 years (0.42) were higher than observed for height (0.36) and diameter at breast height (DBH) (0.28) at 5 years. The overall type B genetic correlation across sites for velocity stiffness was 0.68, comparable to those found for DBH and volume growth, indicating that family rankings were moderately repeatable across all sites for these traits. No significant genetic correlations were observed between velocity stiffness, DBH, and volume growth. In contrast, a significant, but small, favorable genetic correlation was found between height and velocity stiffness. Twenty percent of the families had positive breeding values for both velocity stiffness and growth. The low cost, high heritability and nearly independent segregation of the genes involved with in-tree velocity stiffness and growth traits indicate that acoustic methods can be integrated into tree improvement programs to breed for improved corewood stiffness along with growth in slash pine.


2003 ◽  
Vol 33 (6) ◽  
pp. 1102-1109 ◽  
Author(s):  
Anita C Koehn ◽  
James H Roberds ◽  
Robert L Doudrick

Photochemical quenching, nonphotochemical quenching, and yield of photosystem II were measured on seedlings of full-sibling, open-, and self-pollinated slash pine (Pinus elliottii Engelm. var. elliottii) families. Our results reveal that genetic variation in photochemical quenching and yield of photosystem II exists within this species. The pattern of variation found in these traits is consistent with the variance profile expected to occur as a result of segregation among nuclear genes. Variation among families accounted for 17% of the total variation observed in photochemical quenching, whereas the component for trees within families made up slightly more than 25% of the total. Less variation, both among families as well as among trees within families, was found for yield of photosystem II. A strikingly different pattern was observed for nonphotochemical quenching. Other than the error term, only pretreatment effects contributed significantly to the variation observed. This suggests that nonphotochemical quenching is largely influenced by environmental factors. With regard to associations between fluorescence and growth traits, both height and diameter growth were found to be positively correlated with photochemical quenching (0.36 and 0.33, respectively) when selfed and open-pollinated families were analyzed along with control-pollinated families.


2021 ◽  
Author(s):  
Paris Lambdin

Abstract This species has had limited distribution from its native habitats in the southern region of the USA since its discovery and description (Lobdell, 1930). O. acuta appears to be restricted to feeding on species of pines and loblolly pine, Pinus taeda, is its preferred food source. In its native habitat, populations seldom reach pest status due to the presence of natural enemies. In 1988, it was transported to a pine seed orchard in China on slash pine, Pinus elliottii, scions purchased in the USA. Sun et al. (1996) noted that O. acuta-infested slash pine scions leaving the USA and entering China in 1988 were not subjected to the quarantine restrictions of either country. The loblolly pine mealybug quickly became established and rapidly spread throughout pine plantations in the Guangdong Province, China where it threatens both native and introduced species of pines in the region.


1979 ◽  
Vol 27 (5) ◽  
pp. 609 ◽  
Author(s):  
FD Panetta

Previously documented shade tolerance in establishing seedlings of groundsel bush (Baccharis halimifolia L.) was reflected in the similarity of the size structures of populations growing within slash pine (Pinus elliottii var. ellottii Engelm.) stands of differing ages. The accumulation of litter appeared to be the dominant factor leading to the cessation of seedling recruitment following canopy closure. Evidence for self-thinning obtained from the B. halimifolia population occuring within the younger pine stand provided an indication that the carrying capacity of the site was approached fairly early in the rotation.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1300
Author(s):  
Xiaogang Ding ◽  
Xiaochuan Li ◽  
Ye Qi ◽  
Zhengyong Zhao ◽  
Dongxiao Sun ◽  
...  

Stocks and stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) in ultisols are not well documented for converted forests. In this study, Ultisols were sampled in 175 plots from one type of secondary forest and four plantations of Masson pine (Pinus massoniana Lamb.), Slash pine (Pinus elliottii Engelm.), Eucalypt (Eucalyptus obliqua L’Hér.), and Litchi (Litchi chinensis Sonn., 1782) in Yunfu, Guangdong province, South China. Five layers of soil were sampled with a distance of 20 cm between two adjacent layers up to a depth of 100 cm. We did not find interactive effects between forest type and soil layer depth on soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) concentrations and storages. Storage of SOC was not different between secondary forests and Eucalypt plantations, but SOC of these two forest types were lower than that in Litchi, Masson pine, and Slash pine plantations. Soil C:P was higher in Slash pine plantations than in secondary forests. Soil CNP showed a decreasing trend with the increase of soil depth. Soil TP did not show any significant difference among soil layers. Soil bulk density had a negative contribution to soil C and P stocks, and longitude and elevation were positive drivers for soil C, N, and P stocks. Overall, Litchi plantations are the only type of plantation that obtained enhanced C storage in 0–100 cm soils and diverse N concentrations among soil layers during the conversion from secondary forests to plantations over ultisols.


Sign in / Sign up

Export Citation Format

Share Document