Seasonal cambial activity and tree-ring formation of Pinus merkusii and Pinus kesiya in Northern Thailand in dependence on climate

2006 ◽  
Vol 226 (1-3) ◽  
pp. 279-289 ◽  
Author(s):  
Nathsuda Pumijumnong ◽  
Toonsak Wanyaphet
2012 ◽  
Vol 42 (3) ◽  
pp. 517-531 ◽  
Author(s):  
Robert Au ◽  
Jacques C. Tardif

Stable carbon isotopes (δ13C) fixed in tree rings are dependent upon environmental conditions. Old northern white-cedar ( Thuja occidentalis L.) trees were sampled at their northwestern limit of distribution in central Canada. The objectives of the study were (i) to investigate the association between tree-ring δ13C values and radial growth in addition to the response of these variables to climate, (ii) to assess site differences between two sites varying in moisture regime, and (iii) to compare tree-ring δ13C of T. occidentalis with that of other boreal tree species growing at the northern limit of their distribution in central Canada. Over 2500 tree rings comprised of 15 T. occidentalis trees were analyzed for δ13C. Annually resolved δ13C (1650–2006) and ring-width (1542–2006) chronologies were developed. During the year of ring formation, ring width was associated with spring and early-summer conditions, whereas δ13C was more indicative of overall summer conditions. However, compared with δ13C values, ring width was more often associated with climate conditions in the year prior to ring formation. Conditions conducive to moisture stress were important for both parameters. Although ring width and δ13C corresponded to the drought intervals of the 1790s, 1840s, 1890s, 1930s, and 1960–1970, ring width may be more responsive to prolonged drought than δ13C. Tree-ring δ13C could, however, provide important information regarding physiological adaptations to drought.


2017 ◽  
Vol 42 ◽  
pp. 31-41 ◽  
Author(s):  
Minhui He ◽  
Vladimir Shishov ◽  
Nazgul Kaparova ◽  
Bao Yang ◽  
Achim Bräuning ◽  
...  

Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 663 ◽  
Author(s):  
Małgorzata Danek ◽  
Monika Chuchro ◽  
Adam Walanus

In this paper, the first study of a regional character on the influence of climatic factors on the tree-ring growth of European larch (Larix decidua Mill.) growing in the Polish Sudetes is presented. The obtained results indicate the relatively high diversity of the climatic signal observed in the tree rings of larches growing in the Sudetes. The most significant differentiating factor is altitude. The results suggest that the possible influence of local conditions (e.g., summit proximity, soil and bedrock characteristics, and exposure to strong winds) could also be of importance. A positive relationship between tree-ring growth and May temperatures was noted throughout the area; this indicates the principal importance of thermal conditions during the initial stage of cambial activity and tree-ring formation in larches from the Sudetes. The negative effect of the temperatures in the previous summer upon the tree-ring growth of larch in the subsequent year was also observed. The studies also indicate the negative influence of the water stress in summer (particularly in July of the previous year) upon the growth of trees. The negative relationship between tree-ring growth and the previous November temperature could be explained by the need for a late-autumn cooling, which affects the development of assimilation apparatus in spring of the subsequent year, which indirectly affects the tree-ring growth in the same year.


2021 ◽  
Vol 12 ◽  
Author(s):  
Holger Gärtner ◽  
Emad Farahat

Moringa peregrina (Forssk.) Fiori, one of 13 species of the Moringaceae family widely distributed throughout the dry tropics, has the potential to become one of the most economically important medicinal plants in Egypt. However, despite its tolerance for drought and heat, it is also threatened by increasing temperatures and decreasing precipitation. Although the phenophase of this species is well documented, almost nothing is known about its period of cambial activity in desert regions. Ring formation and the general environmental adaptability of trees are affected by the timing of cambial activation. In our study site, we observe a distinct coupling of the development of new green leaves at the onset of vegetative growth in October and the phase of cambial activity (November–January). The onset of cambial activity seems to be related to a drop in temperature in October and the onset of torrential rains in the region. There might even be a short phase between the end of cambial activity and the onset of bud formation without xylem formation, but with photosynthetic activity. If so, we assume that all assimilates are stored as non-structural carbohydrates (NSC) in the parenchyma of the new ring. This potential gap opens new questions regarding the correlation between NSC storage capacity and the timing of remobilization for subsequent ring formation.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1294
Author(s):  
Liliana V. Belokopytova ◽  
Patrick Fonti ◽  
Elena A. Babushkina ◽  
Dina F. Zhirnova ◽  
Eugene A. Vaganov

Research Highlights: This study emphasized the importance of multi-parameter analyses along ecological gradients for a more holistic understanding of the complex mechanism of tree-ring formation. Background and Objectives: The analysis of climatic signals from cell anatomical features measured along series of tree-rings provides mechanistic details on how environmental drivers rule tree-ring formation. However, the processes of cell development might not be independent, limiting the interpretation of the cell-based climatic signal. In this study, we investigated the variability, intercorrelations and climatic drivers of wood anatomical parameters, resulting from consequent cell developmental processes. Materials and Methods: The study was performed on thin cross-sections from wood cores sampled at ~1.3 m stem height from mature trees of Pinus sylvestris L. growing at five sampling sites along an ecological gradient from cold and wet to hot and dry within continental Southern Siberia. Tracheid number per radial file, their diameters and wall thicknesses were measured along the radial direction from microphotographs for five trees per site. These parameters were then averaged at each site for earlywood and latewood over the last 50 tree rings to build site chronologies. Their correlations among themselves and with 21-day moving climatic series were calculated. Results: Our findings showed that wood formation was not simply the result of environmentally driven independent subprocesses of cell division, enlargement and wall deposition. These processes appear to be interconnected within each zone of the ring, as well as between earlywood and latewood. However, earlywood parameters tend to have more distinctive climatic responses and lower intercorrelations. On the other hand, there are clear indications that the mechanisms of cell division and enlargement share similar climatic drivers and are more sensitive to water limitation than the process of wall deposition. Conclusions: Indications were provided that (i) earlywood formation left a legacy on latewood formation, (ii) cell division and enlargement shared more similar drivers between each other than with wall deposition, and (iii) the mechanism of cell division and enlargement along the gradient switch from water to heat limitations at different thresholds than wall deposition.


Sign in / Sign up

Export Citation Format

Share Document