scholarly journals Prognostic tumor microenvironment gene and the relationship with immune infiltration characteristics in metastatic breast cancer

BIOCELL ◽  
2022 ◽  
Vol 46 (5) ◽  
pp. 1215-1243
Author(s):  
LU YANG ◽  
YUN LIU ◽  
BOKE ZHANG ◽  
MENGSI YU ◽  
FEN HUANG ◽  
...  
2021 ◽  
Author(s):  
SANJAY MISHRA ◽  
Manish Charan ◽  
Rajni Kant Shukla ◽  
Pranay Agarwal ◽  
Swati Misri ◽  
...  

Abstract Background: Metastasis is the major cause of mortality in breast cancer; however, the molecular mechanisms remain elusive. In our previous study, we demonstrated that S100A7/RAGE mediates breast cancer growth and metastasis by recruitment of tumor-associated macrophages. However, the downstream S100A7-mediated inflammatory oncogenic signaling cascade that enhances breast tumor growth and metastasis by generating the immunosuppressive tumor microenvironment (iTME) has not been studied. In this present study, we aimed to investigate the S100A7 and cPLA2 cross-talk in enhancing tumor growth and metastasis through enhancing the iTME.Methods: Human breast cancer tissue and plasma samples were used to analyze the expression of S100A7, cPLA2, and PGE2 titer. S100A7-overexpressing or downregulated human metastatic breast cancer cells were used to evaluate the S100A7-mediated downstream signaling mechanisms. Bi-transgenic mS100a7a15 overexpression, TNBC C3(1)/Tag transgenic, and humanized patient-derived xenograft mouse models and cPLA2 inhibitor (AACOCF3) were used to investigate the role of S100A7/cPLA2/PGE2 signaling in tumor growth and metastasis. Additionally, CODEX, a highly advanced multiplexed imaging was employed to delineate the effect of S100A7/cPLA2 inhibition on the recruitment of various immune cells.Results: S100A7 and cPLA2 are highly expressed and positively correlated in malignant breast cancer patients. S100A7/RAGE upregulates cPLA2/PGE2 axis in aggressive breast cancer cells. Furthermore, S100A7 is positively correlated with PGE2 in breast cancer patients. Moreover, cPLA2 pharmacological inhibition suppressed S100A7-mediated tumor growth and metastasis in multiple pre-clinical models. Mechanistically, S100A7-mediated activation of cPLA2 enhances the recruitment of immunosuppressive myeloid cells by increasing PGE2 to fuel breast cancer growth and its secondary spread. We revealed that cPLA2 inhibitor mitigates S100A7-mediated breast tumorigenicity by suppressing the iTME. Furthermore, CODEX imaging data showed that cPLA2 inhibition increased the infiltration of CD4+/CD8+ T cells in the TME. Analysis of metastatic breast cancer samples revealed a positive correlation between S100A7/cPLA2 with CD163+ tumor-associated M2-macrophages.Conclusions: Our study shows that cross-talk between S100A7 and cPLA2 plays an important role in enhancing breast tumor growth and metastasis by generating an immunosuppressive tumor microenvironment and reducing infiltration of T cells. Furthermore, S100A7 could be used as a novel non-invasive prognostic marker and cPLA2 inhibitors as promising drugs against S100A7-overexpressing metastatic breast cancer.


2019 ◽  
Vol 64 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Tianqun Lang ◽  
Xinyue Dong ◽  
Zhong Zheng ◽  
Yiran Liu ◽  
Guanru Wang ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1827 ◽  
Author(s):  
Grace L. Wong ◽  
Sara Abu Jalboush ◽  
Hui-Wen Lo

Breast cancer is the most frequent malignancy for women in which one in eight women will be diagnosed with the disease in their lifetime. Despite advances made in treating primary breast cancer, there is still no effective treatment for metastatic breast cancer. Consequently, metastatic breast cancer is responsible for 90% of breast cancer-related deaths while only accounting for approximately one third of all breast cancer cases. To help develop effective treatments for metastatic breast cancer, it is important to gain a deeper understanding of the mechanisms by which breast cancer metastasizes, particularly, those underlying organotropism towards brain, bone, and lungs. In this review, we will primarily focus on the roles that circulating exosomal microRNAs (miRNAs) play in organotropism of breast cancer metastasis. Exosomes are extracellular vesicles that play critical roles in intercellular communication. MicroRNAs can be encapsulated in exosomes; cargo-loaded exosomes can be secreted by tumor cells into the tumor microenvironment to facilitate tumor–stroma interactions or released to circulation to prime distant organs for subsequent metastasis. Here, we will summarize our current knowledge on the biogenesis of exosomes and miRNAs, mechanisms of cargo sorting into exosomes, the exosomal miRNAs implicated in breast cancer metastasis, and therapeutic exosomal miRNAs.


2009 ◽  
Vol 122 (1) ◽  
pp. 211-217 ◽  
Author(s):  
Edoardo Botteri ◽  
Maria Teresa Sandri ◽  
Vincenzo Bagnardi ◽  
Elisabetta Munzone ◽  
Laura Zorzino ◽  
...  

1963 ◽  
Vol 26 (1) ◽  
pp. 149-153 ◽  
Author(s):  
R. D. BULBROOK ◽  
B. S. THOMAS ◽  
B. W. L. BROOKSBANK

SUMMARY 1. There is a very high correlation between the amounts of urinary androstenol and those of dehydroepiandrosterone, androsterone and aetiocholanolone in women with metastatic breast cancer. 2. In spite of this correlation, which implies a common precursor, tritiated dehydroepiandrosterone or testosterone are not metabolized to androstenol at the periphery (maximum conversion: 0·4% of injected dose) in amounts sufficient to account for the urinary androstenol. 3. As a means of evaluating 'androgen status' androstenol assays do not appear to be more useful than those of the 11-deoxy-17-oxosteroids.


2019 ◽  
Vol 64 (15) ◽  
pp. 1118
Author(s):  
Tianqun Lang ◽  
Xinyue Dong ◽  
Zhong Zheng ◽  
Yiran Liu ◽  
Guanru Wang ◽  
...  

Author(s):  
Gabrielle Rocque ◽  
Aidan Gilbert ◽  
Courtney P Williams ◽  
Arie Nakhmani ◽  
Pravinkumar G Kandhare ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document