scholarly journals A Discrete Numerical Study of the Effect of the Thickness and the Porosity of the Sand Cushion on the Impact Response Due to the Rockfall

2022 ◽  
Vol 130 (3) ◽  
pp. 1683-1698
Author(s):  
Song Yuan ◽  
Peng Zhao ◽  
Liangpu Li ◽  
Xibao Wang ◽  
Jun Liu ◽  
...  
Author(s):  
NDD Silva ◽  
JJM Machado ◽  
EAS Marques ◽  
PMGP Moreira ◽  
LFM da Silva

Based on economic and environmental factors related to energy efficiency, the automotive industry is being increasingly encouraged to design lighter structures, making use of adhesive bonding in vehicle body frames. To meet the standards of the automotive sector, adhesive joints must provide high strength and stiffness, low cost and good energy absorption at a component level, thereby ensuring good impact strength and passenger safety. This work aims to study, at room temperature (24°C), the impact response of a real scale automotive structure bonded with a crash-resistant epoxy, allowing to access the suitability of adhesives for automotive structural purposes. The epoxy adhesive was found to successfully transfer the loads to the aluminium substrates and not to compromise the integrity of the structure, as its failure was dominated by the behaviour of aluminium. Results obtained with a numerical model of the component were found to be in close agreement with the experimental failure load, demonstrating that numerical analysis can be a viable tool to predict the structure’s behaviour. In addition, a polyurethane was used as an alternative to the epoxy system to bond the structure, proving that the joint behaves better in the presence of a more flexible adhesive, as no failure was found for this case. Aluminium single-lap joints with two adhesive thicknesses were tested as a complement to understand the influence of this parameter on the impact response of a joint, showing a 21% decrease in strength when the highest thickness was used.


2014 ◽  
Vol 566 ◽  
pp. 34-40
Author(s):  
Michael J. Worswick ◽  
Ryan George ◽  
Alex Bardelcik ◽  
Luke Ten Kortenaar ◽  
Duane Detwiler

The impact modeling of a hot-formed component with tailored mechanical properties is studied to understand the influence of the thermal processing history and how the final properties of the component will affect its impact response. This paper presents a numerical study of the forming and quenching process and subsequent impact simulations. The processing simulations serve to predict the final microstructure and hardness distribution within a lab-scale B-pillar component that is processed using a tool with separate heated and cooled regions. A remapping algorithm is used to translate the results of the forming simulation to the impact simulation. A strain-rate sensitive material model is applied to model the response of these tailored microstructures during impact events. A comparison between a component that is fully hardened and a tailored component with regions of lower strength but increased ductility is presented in this work. Simulations that do not consider the onset of fracture predict superior peak impact load and energy absorption of the fully martensitic component due to its higher overall strength. However, the bainitic regions within the tailored component exhibit much higher ductility. Current work is addressing the introduction of failure criteria into simulations of tailored hot stamped components under impact loading for which the tailored component is expected to demonstrate superior resistance to cracking relative to the fully hardened component.


2019 ◽  
Author(s):  
Kristian Gjerrestad Andersen ◽  
Gbanaibolou Jombo ◽  
Sikiru Oluwarotimi Ismail ◽  
Segun Adeyemi ◽  
Rajini N ◽  
...  

2021 ◽  
Vol 923 ◽  
Author(s):  
Marc-Andre Brassard ◽  
Neil Causley ◽  
Nasser Krizou ◽  
Joshua A. Dijksman ◽  
Abram. H. Clark

Abstract


2021 ◽  
pp. 174425912098418
Author(s):  
Toivo Säwén ◽  
Martina Stockhaus ◽  
Carl-Eric Hagentoft ◽  
Nora Schjøth Bunkholt ◽  
Paula Wahlgren

Timber roof constructions are commonly ventilated through an air cavity beneath the roof sheathing in order to remove heat and moisture from the construction. The driving forces for this ventilation are wind pressure and thermal buoyancy. The wind driven ventilation has been studied extensively, while models for predicting buoyant flow are less developed. In the present study, a novel analytical model is presented to predict the air flow caused by thermal buoyancy in a ventilated roof construction. The model provides means to calculate the cavity Rayleigh number for the roof construction, which is then correlated with the air flow rate. The model predictions are compared to the results of an experimental and a numerical study examining the effect of different cavity designs and inclinations on the air flow rate in a ventilated roof subjected to varying heat loads. Over 80 different test set-ups, the analytical model was found to replicate both experimental and numerical results within an acceptable margin. The effect of an increased total roof height, air cavity height and solar heat load for a given construction is an increased air flow rate through the air cavity. On average, the analytical model predicts a 3% higher air flow rate than found in the numerical study, and a 20% lower air flow rate than found in the experimental study, for comparable test set-ups. The model provided can be used to predict the air flow rate in cavities of varying design, and to quantify the impact of suggested roof design changes. The result can be used as a basis for estimating the moisture safety of a roof construction.


Author(s):  
Fatemeh Alizadeh ◽  
Navid Kharghani ◽  
Carlos Guedes Soares

Glass/Vinylester composite laminates are comprehensively characterised to assess its impact response behaviour under moisture exposure in marine structures. An instrumented drop weight impact machine is utilised to determine the impact responses of dry and immersed specimens in normal, salted and sea water. The specimens, which had three different thicknesses, were subjected to water exposure for a very long period of over 20 months before tested in a low-velocity impact experiment. Water uptake was measured primarily to study the degradation profiles of GRP laminates after being permeated by water. Matrix dissolution and interfacial damage observed on the laminates after prolonged moisture exposure while the absorption behaviour was found typically non-Fickian. The weight of the composite plates firstly increased because of water diffusion up to month 15 and then decreased due to matrix degradation. The specimens with 3, 6 and 9 mm thickness exhibited maximum water absorption corresponding to 2.6%, 0.7% and 0.5% weight gain, respectively. In general, the results indicated that water uptake and impact properties were affected by thickness and less by water type. Impact properties of prolonged immersed specimens reduced remarkably, and intense failure modes detected almost in all cases. The least sensitive to impact damage were wet specimens with 9 mm thickness as they indicated similar maximum load and absorbed energy for different impact energies.


Sign in / Sign up

Export Citation Format

Share Document