scholarly journals Design and Optimization of a Hybrid Energy System for Decentralized Heating

2021 ◽  
Vol 17 (1) ◽  
pp. 49-70
Author(s):  
Ling Cheng ◽  
Bingqing Guo ◽  
Kecheng Li
2019 ◽  
Vol 14 (2) ◽  
pp. 408-418
Author(s):  
Reza Alayi ◽  
Alibakhsh Kasaeian ◽  
Atabak Najafi ◽  
Eskandar Jamali

Purpose The important factors, which should be considered in the design of a hybrid system of photovoltaic and wind energy are discussed in this study. The current load demand for electricity, as well as the load profile of solar radiation and wind power of the specified region chosen in Iran, is the basis of design and optimization in this study. Hybrid optimization model for electric renewable (HOMER) software was used to simulate and optimize hybrid energy system technically and economically. Design/methodology/approach HOMER software was used to simulate and optimize hybrid energy system technically and economically. Findings The maximum radiation intensity for the study area is 7.95 kwh/m2/day for July and the maximum wind speed for the study area is 11.02 m/s for January. Originality/value This research is the result of the original studies.


2019 ◽  
Vol 17 ◽  
pp. 550-554 ◽  
Author(s):  
I. Riverón ◽  
◽  
J.F. Gómez ◽  
B. González ◽  
J. Albino Méndez

2017 ◽  
Author(s):  
Askin Guler Yigitoglu ◽  
Thomas Harrison ◽  
Michael Scott Greenwood

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1581
Author(s):  
Wenqiang Zhu ◽  
Jiang Guo ◽  
Guo Zhao ◽  
Bing Zeng

The hybrid renewable energy system is a promising and significant technology for clean and sustainable island power supply. Among the abundant ocean energy sources, tidal current energy appears to be very valuable due to its excellent predictability and stability, particularly compared with the intermittent wind and solar energy. In this paper, an island hybrid energy microgrid composed of photovoltaic, wind, tidal current, battery and diesel is constructed according to the actual energy sources. A sizing optimization method based on improved multi-objective grey wolf optimizer (IMOGWO) is presented to optimize the hybrid energy system. The proposed method is applied to determine the optimal system size, which is a multi-objective problem including the minimization of annualized cost of system (CACS) and deficiency of power supply probability (DPSP). MATLAB software is utilized to program and simulate the hybrid energy system. Optimization results confirm that IMOGWO is feasible to optimally size the system, and the energy management strategy effectively matches the requirements of system operation. Furthermore, comparison of hybrid systems with and without tidal current turbines is undertaken to confirm that the utilization of tidal current turbines can contribute to enhancing system reliability and reducing system investment, especially in areas with abundant tidal energy sources.


Sign in / Sign up

Export Citation Format

Share Document