scholarly journals Soil Urea Analysis Using Mid-Infrared Spectroscopy and Machine Learning

2022 ◽  
Vol 32 (3) ◽  
pp. 1867-1880
Author(s):  
J. Haritha ◽  
R. S. Valarmathi ◽  
M. Kalamani
2019 ◽  
Vol 4 ◽  
pp. 76 ◽  
Author(s):  
Mario González Jiménez ◽  
Simon A. Babayan ◽  
Pegah Khazaeli ◽  
Margaret Doyle ◽  
Finlay Walton ◽  
...  

Despite the global efforts made in the fight against malaria, the disease is resurging. One of the main causes is the resistance that Anopheles mosquitoes, vectors of the disease, have developed to insecticides. Anopheles must survive for at least 10 days to possibly transmit malaria. Therefore, to evaluate and improve malaria vector control interventions, it is imperative to monitor and accurately estimate the age distribution of mosquito populations as well as their population sizes. Here, we demonstrate a machine-learning based approach that uses mid-infrared spectra of mosquitoes to characterise simultaneously both age and species identity of females of the African malaria vector species Anopheles gambiae and An. arabiensis, using laboratory colonies. Mid-infrared spectroscopy-based prediction of mosquito age structures was statistically indistinguishable from true modelled distributions. The accuracy of classifying mosquitoes by species was 82.6%. The method has a negligible cost per mosquito, does not require highly trained personnel, is rapid, and so can be easily applied in both laboratory and field settings. Our results indicate this method is a promising alternative to current mosquito species and age-grading approaches, with further improvements to accuracy and expansion for use with wild mosquito vectors possible through collection of larger mid-infrared spectroscopy data sets.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4987
Author(s):  
Hongyan Zhu ◽  
Jun-Li Xu

Different varieties and geographical origins of walnut usually lead to different nutritional values, contributing to a big difference in the final price. The conventional analytical techniques have some unavoidable limitations, e.g., chemical analysis is usually time-expensive and labor-intensive. Therefore, this work aims to apply Fourier transform mid-infrared spectroscopy coupled with machine learning algorithms for the rapid and accurate classification of walnut species that originated from ten varieties produced from four provinces. Three types of models were developed by using five machine learning classifiers to (1) differentiate four geographical origins; (2) identify varieties produced from the same origin; and (3) classify all 10 varieties from four origins. Prior to modeling, the wavelet transform algorithm was used to smooth and denoise the spectrum. The results showed that the identification of varieties under the same origin performed the best (i.e., accuracy = 100% for some origins), followed by the classification of four different origins (i.e., accuracy = 96.97%), while the discrimination of all 10 varieties is the least desirable (i.e., accuracy = 87.88%). Our results implicated that using the full spectral range of 700–4350 cm−1 is inferior to using the subsets of the optimal spectral variables for some classifiers. Additionally, it is demonstrated that back propagation neural network (BPNN) delivered the best model performance, while random forests (RF) produced the worst outcome. Hence, this work showed that the authentication and provenance of walnut can be realized effectively based on Fourier transform mid-infrared spectroscopy combined with machine learning algorithms.


2018 ◽  
Author(s):  
Mario González-Jiménez ◽  
Simon A. Babayan ◽  
Pegah Khazaeli ◽  
Margaret Doyle ◽  
Finlay Walton ◽  
...  

Despite the global efforts made in the fight against malaria, the disease is resurging. One of the main causes is the resistance that Anopheles mosquitoes, vectors of the disease, have developed to insecticides. Anopheles must survive for at least 12 days to possibly transmit malaria. Therefore, to evaluate and improve malaria vector control interventions, it is imperative to monitor and accurately estimate the age distribution of mosquito populations as well as total population sizes. However, estimating mosquito age is currently a slow, imprecise, and labour-intensive process that can only distinguish under-from over-four-day-old female mosquitoes. Here, we demonstrate a machine-learning based approach that utilizes mid-infrared spectra of mosquitoes to characterize simultaneously, and with unprecedented accuracy, both age and species identity of females of the malaria vectors Anopheles gambiae and An. arabiensis mosquitoes within their respective populations. The prediction of the age structures was statistically indistinguishable from true modelled distributions. The method has a negligible cost per mosquito, does not require highly trained personnel, is substantially faster than current techniques, and so can be easily applied in both laboratory and field settings. Our results show that, with larger mid-infrared spectroscopy data sets, this technique can be further improved and expanded to vectors of other diseases such as Zika and Dengue.


2019 ◽  
Vol 4 ◽  
pp. 76 ◽  
Author(s):  
Mario González Jiménez ◽  
Simon A. Babayan ◽  
Pegah Khazaeli ◽  
Margaret Doyle ◽  
Finlay Walton ◽  
...  

Despite the global efforts made in the fight against malaria, the disease is resurging. One of the main causes is the resistance that Anopheles mosquitoes, vectors of the disease, have developed to insecticides. Anopheles must survive for at least 10 days to possibly transmit malaria. Therefore, to evaluate and improve malaria vector control interventions, it is imperative to monitor and accurately estimate the age distribution of mosquito populations as well as their population sizes. Here, we demonstrate a machine-learning based approach that uses mid-infrared spectra of mosquitoes to characterise simultaneously both age and species identity of females of the African malaria vector species Anopheles gambiae and An. arabiensis. mid-infrared spectroscopy-based prediction of mosquito age structures was statistically indistinguishable from true modelled distributions. The accuracy of classifying mosquitoes by species was 82.6%. The method has a negligible cost per mosquito, does not require highly trained personnel, is rapid, and so can be easily applied in both laboratory and field settings. Our results indicate this method is a promising alternative to current mosquito species and age-grading approaches, with further improvements to accuracy and expansion for use with other mosquito vectors possible through collection of larger mid-infrared spectroscopy data sets.


2019 ◽  
Vol 4 ◽  
pp. 76
Author(s):  
Mario González Jiménez ◽  
Simon A. Babayan ◽  
Pegah Khazaeli ◽  
Margaret Doyle ◽  
Finlay Walton ◽  
...  

Despite the global efforts made in the fight against malaria, the disease is resurging. One of the main causes is the resistance that Anopheles mosquitoes, vectors of the disease, have developed to insecticides. Anopheles must survive for at least 10 days to possibly transmit malaria. Therefore, to evaluate and improve malaria vector control interventions, it is imperative to monitor and accurately estimate the age distribution of mosquito populations as well as their population sizes. Here, we demonstrate a machine-learning based approach that uses mid-infrared spectra of mosquitoes to characterise simultaneously both age and species identity of females of the African malaria vector species Anopheles gambiae and An. arabiensis, using laboratory colonies. Mid-infrared spectroscopy-based prediction of mosquito age structures was statistically indistinguishable from true modelled distributions. The accuracy of classifying mosquitoes by species was 82.6%. The method has a negligible cost per mosquito, does not require highly trained personnel, is rapid, and so can be easily applied in both laboratory and field settings. Our results indicate this method is a promising alternative to current mosquito species and age-grading approaches, with further improvements to accuracy and expansion for use with wild mosquito vectors possible through collection of larger mid-infrared spectroscopy data sets.


2021 ◽  
Vol 164 ◽  
pp. 106029
Author(s):  
Diego Maciel Gerônimo ◽  
Sheila Catarina de Oliveira ◽  
Frederico Luis Felipe Soares ◽  
Patricio Peralta-Zamora ◽  
Noemi Nagata

2021 ◽  
Vol 162 ◽  
pp. 103894
Author(s):  
Thao Pham ◽  
Cornelia Rumpel ◽  
Yvan Capowiez ◽  
Pascal Jouquet ◽  
Céline Pelosi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document