material source
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 127)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Biao Liu ◽  
Yufei Zhao ◽  
Wenbo Wang ◽  
Biwang Liu

The compaction density of sand-gravel materials has a strong gradation correlation, mainly affected by some material source parameters such as P5 content (material proportion with particle size greater than 5 mm), maximum particle size and curvature coefficient. When evaluating the compaction density of sand-gravel materials, the existing compaction density evaluation models have poor robustness and adaptability because they do not take into full consideration the impact of material source parameters. To overcome the shortcomings of existing compaction density models, this study comprehensively considers the impact of material source parameters and compaction parameters on compaction density. Firstly, asymmetric data were fused and a multi-source heterogeneous dataset was established for compaction density analysis. Then, the Elman neural network optimized by the adaptive simulated annealing particle swarm optimization algorithm was proposed to establish the compaction density evaluation model. Finally, a case study of the Dashimen water conservancy project in China is employed to demonstrate the effectiveness and feasibility of the proposed method. The results show that this model performs high-precision evaluation of the compaction density at any position of the entire working area which can timely correct the weak area of compaction density on the spot, and reduce the number of test pit tests.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Masanori Kurosawa ◽  
Masao Semmoto ◽  
Toru Shibata

Several pottery sherds from the Svilengrad-Brantiite site, Bulgaria, were mineralogically and petrographically analyzed. The aim was to add information to the very scarce material data available for Early Bronze Age pottery in the southeastern Thrace plain, Bulgaria, in order to examine a possible raw-material source of the pottery. The characterization techniques applied were optical microscopy (OM), petrographic microscopy (PM), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray fluorescence (XRF) spectroscopy, and X-ray diffraction (XRD). The pottery samples consisted of two typological groups: a local-made type and a cord-impressed decoration type influenced by foreign cultures. All of the samples were produced from fine clay pastes that had a quite similar composition, with abundant mineral grains of similar mineral composition and fragments of metamorphic and granitic rocks. The chemical compositions of each mineral in the grains and fragments were almost identical, and consistent with those from metamorphic and granitic rocks from the Sakar-Strandja Mountains near the study site. The clay paste compositions corresponded to those of illite/smectite mixed-layer clay minerals or mixtures of illite and smectite, and the clay-mineral species were consistent with those in Miocene–Pleistocene or Holocene sediments surrounding the site.


2022 ◽  
Author(s):  
Budharaju Harshavardhan ◽  
Allen Zennifer ◽  
Swaminathan Sethuraman ◽  
Arghya Paul ◽  
Dhakshinamoorthy Sundaramurthi

DNA has excellent features such as the presence of functional and targeted molecular recognition motifs, tailorable, defined material source, multifunctionality, high–precision molecular self–assembly, synthetic preparation, hydrophilicity and outstanding biocompatibility. Due...


2022 ◽  
Vol 1212 (1) ◽  
pp. 012035
Author(s):  
A Beddu ◽  
H Setiawan ◽  
Nuraida ◽  
M R Anugrah

Abstract Liquefaction process is associated with the loss of the shear strength of the saturated loose sands caused by strong earthquakes. Due to mitigitation of liquefaction hazard, an appropriate mitigation of liquefaction using environmentally friendly methods is critical and becoming increasingly important and unavoidable. The laboratory investigation was carried out to study the shear strength behaviour of liquefiable sand of Petobo treated by agarose on different concentration 1%,3% 5%. A series of direct shear test were conducted under three level of vertical stress 10 kPa, 20 kPa, and 30 kPa on the specimen. It was found that the optimum content of agarose which can be considered is at 1%-3%, using stress ratio (τ/σv) analysis shows that stress ratio decreases with increasing the vertical stress on the same agar content. The implication this result that the application of this method must consider variation of material source and characteristic, and the suitable level of vertical stresses.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Yao Yao ◽  
Zhenbing Sun ◽  
Xiaobao Li ◽  
Zhengjie Tang ◽  
Xiaoping Li ◽  
...  

Sodium carboxymethyl cellulose (CMC) can be derived from a variety of cellulosic materials and is widely used in petroleum mining, construction, paper making, and packaging. CMCs can be derived from many sources with the final properties reflecting the characteristics of the original lignocellulosic matrix as well as the subsequent separation steps that affect the degree of carboxy methyl substitution on the cellulose hydroxyls. While a large percentage of CMCs is derived from wood pulp, many other plant sources may produce more attractive properties for specific applications. The effects of five plant sources on the resulting properties of CMC and CMC/sodium alginate/glycerol composite films were studied. The degree of substitution and resulting tensile strength in leaf-derived CMC was from 0.87 to 0.89 and from 15.81 to 16.35 MPa, respectively, while the degree of substitution and resulting tensile strength in wooden materials-derived CMC were from 1.08 to 1.17 and from 26.08 to 28.97 MPa, respectively. Thus, the degree of substitution and resulting tensile strength tended to be 20% lower in leaf-derived CMCs compared to those prepared from wood or bamboo. Microstructures of bamboo cellulose, bamboo CMC powder, and bamboo leaf CMC composites’ films all differed from pine-derived material, but plant source had no noticeable effect on the X-ray diffraction characteristics, Fourier transform infrared spectroscopy spectra, or pyrolysis properties of CMC or composites films. The results highlighted the potential for using plant source as a tool for varying CMC properties for specific applications.


Inorganics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Meriem Sassi ◽  
Andrea Simon

Aluminium dross is a hazardous industrial waste generated during aluminium production. It contains metallic oxides of aluminium and magnesium, other phases (aluminum nitride), and residues of fluxes and salts from the melting process of aluminium. Discarding this by-product is considered an environmental and economic challenge due to the high reactivity of dross with water or even air humidity. After removing the hazardous components from the as-received dross, one of the optional approaches is to incorporate the treated dross into construction materials. Dross is applied in several types of research as a secondary raw material source for alumina, clinker, cement or glass-ceramic production, but only a few papers focus on the usage of dross as a foaming agent for foams. Even fewer research are reported where dross was applied as a basic component of foam glasses. In this work, foam glasses were produced completely from waste materials: Aluminium dross, container (SLS) glass, and cathode ray tube (CRT) glass. The research holds several specificities, i.e., combining two industrial waste materials (CRT glass and dross), and adding an increased amount from the wastes. The physical and mechanical characteristics were examined with a special focus on the effect of the foam glass components on the microstructure, density, thermal conductivity, and compressive strength.


2021 ◽  
Vol 63 (4) ◽  
pp. 11-16
Author(s):  
Thi Huong Trinh ◽  
◽  
Quoc Tuan Nguyen ◽  
Thi Huyen Trang Nguyen ◽  
Dang Giap Do ◽  
...  

In this study, the effects of auxin (IBA, NAA), explants, and culture conditions (light/dark) on adventitious root induction of Codonopsis javanica were investigated. The results showed that dark conditions were more suitable for adventitious root induction than light conditions. All three types of explants (internodes, leaves, and nodes) induced adventitious roots, and the appropriate concentration of auxin was 0.5 mg/l IBA. After 4 weeks of incubation under dark conditions, the rooting percentage and number of roots/explant of internode, leaf, and node segments on media supplemented with 0.5 mg/l IBA were 100% and 33.87 roots, 97.78% and 23.48 roots, 100% and 25.20 roots, respectively. These adventitious roots were analysed for the presence of alkaloids, carbohydrates, saponin, fixed oils and fats, phenol, flavonoids, gum, and mucilage. The total polysaccharide content, total phenolic content, and the antioxidant activity (IC50) of C. javanica adventitious root biomass were 16.98%, 1.876 (mg GAE/g DW), and 2.44 (mg/ml), respectively. These results indicate that the adventitious roots of C. javanica contain bioactive compounds, which can be used as a material source for multiplication in large-scale systems.


2021 ◽  
Vol 74 ◽  
pp. 102384
Author(s):  
Sara Kasmaeeyazdi ◽  
Mehdi Abdolmaleki ◽  
Elsy Ibrahim ◽  
Jingyi Jiang ◽  
Ignacio Marzan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document