scholarly journals Light quality-dependent regulation of photoprotection and antioxidant properties in rice seedlings grown under different light-emitting diodes

2020 ◽  
Author(s):  
L.H. TRAN ◽  
D.G. LEE ◽  
S. JUNG
Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1477
Author(s):  
Woo-Suk Jung ◽  
Ill-Min Chung ◽  
Myeong Ha Hwang ◽  
Seung-Hyun Kim ◽  
Chang Yeon Yu ◽  
...  

Light is a key factor that affects phytochemical synthesis and accumulation in plants. Due to limitations of the environment or cultivated land, there is an urgent need to develop indoor cultivation systems to obtain higher yields with increased phytochemical concentrations using convenient light sources. Light-emitting diodes (LEDs) have several advantages, including consumption of lesser power, longer half-life, higher efficacy, and wider variation in the spectral wavelength than traditional light sources; therefore, these devices are preferred for in vitro culture and indoor plant growth. Moreover, LED irradiation of seedlings enhances plant biomass, nutrient and secondary metabolite levels, and antioxidant properties. Specifically, red and blue LED irradiation exerts strong effects on photosynthesis, stomatal functioning, phototropism, photomorphogenesis, and photosynthetic pigment levels. Additionally, ex vitro plantlet development and acclimatization can be enhanced by regulating the spectral properties of LEDs. Applying an appropriate LED spectral wavelength significantly increases antioxidant enzyme activity in plants, thereby enhancing the cell defense system and providing protection from oxidative damage. Since different plant species respond differently to lighting in the cultivation environment, it is necessary to evaluate specific wavebands before large-scale LED application for controlled in vitro plant growth. This review focuses on the most recent advances and applications of LEDs for in vitro culture organogenesis. The mechanisms underlying the production of different phytochemicals, including phenolics, flavonoids, carotenoids, anthocyanins, and antioxidant enzymes, have also been discussed.


HortScience ◽  
2007 ◽  
Vol 42 (7) ◽  
pp. 1609-1611 ◽  
Author(s):  
Janni Bjerregaard Lund ◽  
Theo J. Blom ◽  
Jesper Mazanti Aaslyng

Controlling plant height without the use of plant growth retardants is one of the goals in future production of potted plants. Light quality with a low red to far-red ratio (R:FR) increases plant height. In this trial, the effects of light quality [R:FR ratio of 0.4, 0.7, and 2.4 (R = 600–700 nm, FR = 700–800 nm)] at the end of day were investigated on potted chrysanthemums using growth chambers. After a 9-h photoperiod, the 30-min end-of-day lighting was provided by light-emitting diodes at low irradiance by maintaining either red = 1 μmol·m−2·s−1 (Rcon) or far-red = 1 μmol·m−2·s−1(FRcon). After 3 weeks of end-of-day lighting, plants given the lowest end-of-day ratios (R:FR of 0.4 or 0.7) were taller than control plants (R:FR = 2.4). For low ratios of R:FR (0.4), the actual intensities of R and FR did not affect plant height, whereas for higher ratios of R:FR (0.7 and 2.4), plant height was greater for FRcon than for Rcon. Leaf area of the lateral side shoots was lower for plants treated with an R:FR of 0.4 compared with those of controls. Dry weight, stem diameter, number of internodes, and number of lateral branches were unaffected by the end-of-day ratio.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 523
Author(s):  
Ok Jin Hwang ◽  
Kiyoon Kang ◽  
Kyoungwhan Back

Light is an important factor influencing melatonin synthesis in response to cadmium treatment in rice. However, the effects of light quality on, and the involvement of phytochrome light receptors in, melatonin production have not been explored. In this study, we used light-emitting diodes (LEDs) to investigate the effect of light wavelength on melatonin synthesis, and the role of phytochromes in light-dependent melatonin induction in rice. Upon cadmium treatment, peak melatonin production was observed under combined red and blue (R + B) light, followed by red (R) and blue light (B). However, both far-red (FR) LED light and dark treatment (D) failed to induce melatonin production. Similarly, rice seedlings grown under the R + B treatment showed the highest melatonin synthesis, followed by those grown under B and R. These findings were consistent with the results of our cadmium treatment experiment. To further confirm the effects of light quality on melatonin synthesis, we employed rice photoreceptor mutants lacking functional phytochrome genes. Melatonin induction was most inhibited in the phytochrome A mutant (phyA) followed by the phyB mutant under R + B treatment, whereas phyB produced the least amount of melatonin under R treatment. These results indicate that PhyB is an R light receptor. Expression analyses of genes involved in melatonin biosynthesis clearly demonstrated that tryptophan decarboxylase (TDC) played a key role in phytochrome-mediated melatonin induction when rice seedlings were challenged with cadmium.


2013 ◽  
Vol 19 (10) ◽  
pp. 3004-3006
Author(s):  
Yung-Liang Peng ◽  
Fang-Yin Liu ◽  
Yu-Sen Chang

Sign in / Sign up

Export Citation Format

Share Document