scholarly journals Analysis and Research on Increased Probability Matrix Factorization Techniques in Collaborative Filtering

Author(s):  
Kongari Mounika ◽  
B. V. N. Krishna Suresh

The matrix factorization algorithms such as the matrix factorization technique (MF), singular value decomposition (SVD) and the probability matrix factorization (PMF) and so on, are summarized and compared. Based on the above research work, a kind of improved probability matrix factorization algorithm called MPMF is proposed in this paper. MPMF determines the optimal value of dimension D of both the user feature vector and the item feature vector through experiments. The complexity of the algorithm scales linearly with the number of observations, which can be applied to massive data and has very good scalability. Experimental results show that MPMF can not only achieve higher recommendation accuracy, but also improve the efficiency of the algorithm in sparse and unbalanced data sets compared with other related algorithms.

Author(s):  
K Sobha Rani

Collaborative filtering suffers from the problems of data sparsity and cold start, which dramatically degrade recommendation performance. To help resolve these issues, we propose TrustSVD, a trust-based matrix factorization technique. By analyzing the social trust data from four real-world data sets, we conclude that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Hence, we build on top of a state-of-the-art recommendation algorithm SVD++ which inherently involves the explicit and implicit influence of rated items, by further incorporating both the explicit and implicit influence of trusted users on the prediction of items for an active user. To our knowledge, the work reported is the first to extend SVD++ with social trust information. Experimental results on the four data sets demonstrate that our approach TrustSVD achieves better accuracy than other ten counterparts, and can better handle the concerned issues.


2021 ◽  
Author(s):  
Shalin Shah

Recommender systems aim to personalize the experience of user by suggesting items to the user based on the preferences of a user. The preferences are learned from the user’s interaction history or through explicit ratings that the user has given to the items. The system could be part of a retail website, an online bookstore, a movie rental service or an online education portal and so on. In this paper, I will focus on matrix factorization algorithms as applied to recommender systems and discuss the singular value decomposition, gradient descent-based matrix factorization and parallelizing matrix factorization for large scale applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bing Tang ◽  
Linyao Kang ◽  
Li Zhang ◽  
Feiyan Guo ◽  
Haiwu He

Nonnegative matrix factorization (NMF) has been introduced as an efficient way to reduce the complexity of data compression and its capability of extracting highly interpretable parts from data sets, and it has also been applied to various fields, such as recommendations, image analysis, and text clustering. However, as the size of the matrix increases, the processing speed of nonnegative matrix factorization is very slow. To solve this problem, this paper proposes a parallel algorithm based on GPU for NMF in Spark platform, which makes full use of the advantages of in-memory computation mode and GPU acceleration. The new GPU-accelerated NMF on Spark platform is evaluated in a 4-node Spark heterogeneous cluster using Google Compute Engine by configuring each node a NVIDIA K80 CUDA device, and experimental results indicate that it is competitive in terms of computational time against the existing solutions on a variety of matrix orders. Furthermore, a GPU-accelerated NMF-based parallel collaborative filtering (CF) algorithm is also proposed, utilizing the advantages of data dimensionality reduction and feature extraction of NMF, as well as the multicore parallel computing mode of CUDA. Using real MovieLens data sets, experimental results have shown that the parallelization of NMF-based collaborative filtering on Spark platform effectively outperforms traditional user-based and item-based CF with a higher processing speed and higher recommendation accuracy.


2006 ◽  
Vol 95 (4) ◽  
pp. 2199-2212 ◽  
Author(s):  
Matthew C. Tresch ◽  
Vincent C. K. Cheung ◽  
Andrea d'Avella

Several recent studies have used matrix factorization algorithms to assess the hypothesis that behaviors might be produced through the combination of a small number of muscle synergies. Although generally agreeing in their basic conclusions, these studies have used a range of different algorithms, making their interpretation and integration difficult. We therefore compared the performance of these different algorithms on both simulated and experimental data sets. We focused on the ability of these algorithms to identify the set of synergies underlying a data set. All data sets consisted of nonnegative values, reflecting the nonnegative data of muscle activation patterns. We found that the performance of principal component analysis (PCA) was generally lower than that of the other algorithms in identifying muscle synergies. Factor analysis (FA) with varimax rotation was better than PCA, and was generally at the same levels as independent component analysis (ICA) and nonnegative matrix factorization (NMF). ICA performed very well on data sets corrupted by constant variance Gaussian noise, but was impaired on data sets with signal-dependent noise and when synergy activation coefficients were correlated. Nonnegative matrix factorization (NMF) performed similarly to ICA and FA on data sets with signal-dependent noise and was generally robust across data sets. The best algorithms were ICA applied to the subspace defined by PCA (ICAPCA) and a version of probabilistic ICA with nonnegativity constraints (pICA). We also evaluated some commonly used criteria to identify the number of synergies underlying a data set, finding that only likelihood ratios based on factor analysis identified the correct number of synergies for data sets with signal-dependent noise in some cases. We then proposed an ad hoc procedure, finding that it was able to identify the correct number in a larger number of cases. Finally, we applied these methods to an experimentally obtained data set. The best performing algorithms (FA, ICA, NMF, ICAPCA, pICA) identified synergies very similar to one another. Based on these results, we discuss guidelines for using factorization algorithms to analyze muscle activation patterns. More generally, the ability of several algorithms to identify the correct muscle synergies and activation coefficients in simulated data, combined with their consistency when applied to physiological data sets, suggests that the muscle synergies found by a particular algorithm are not an artifact of that algorithm, but reflect basic aspects of the organization of muscle activation patterns underlying behaviors.


2012 ◽  
Vol 235 ◽  
pp. 15-19
Author(s):  
Li Min Liu ◽  
Xiao Ping Fan ◽  
Yue Shan Xie

Clustering ensemble has been known as an effective method to improve the robustness and stability of clustering analysis. Clustering ensemble solves the problem in two steps:firstly,generating a large set of clustering partitions based on the clustering algorithms;secondly,combining them using a consensus function to get the final clustering result. The key technology of clustering ensemble is the proper consensus function. Recent research proposed using the matrix factorization to solve clustering ensemble. In this paper, we firstly analyze some traditional matrix factorization algorithms; secondly, we propose a new consensus function using binary nonnegative matrix factorization (BMF) and give the optimization algorithm of BMF; lastly, we propose the new framework of clustering ensemble algorithm and give some experiments on UCI Machine Learning Repository. The experiments show that the new algorithm is effective and clustering performance could be significantly improved.


2019 ◽  
Vol 31 (2) ◽  
pp. 417-439 ◽  
Author(s):  
Andersen Man Shun Ang ◽  
Nicolas Gillis

We propose a general framework to accelerate significantly the algorithms for nonnegative matrix factorization (NMF). This framework is inspired from the extrapolation scheme used to accelerate gradient methods in convex optimization and from the method of parallel tangents. However, the use of extrapolation in the context of the exact coordinate descent algorithms tackling the nonconvex NMF problems is novel. We illustrate the performance of this approach on two state-of-the-art NMF algorithms: accelerated hierarchical alternating least squares and alternating nonnegative least squares, using synthetic, image, and document data sets.


Author(s):  
Anusha Viswanadapalli ◽  
Praveen Kumar Nelapati

Singular Value Decomposition (SVD) is trust-based matrix factorization technique for recommendations is proposed. Trust SVD integrates multiple information sources into the recommendation model to reduce the data sparsity and cold start problems and their deterioration of recommendation performance. An analysis of social trust data from four real-world data sets suggests that both the explicit and the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Trust SVD therefore builds on top of a state-of-the-art recommendation algorithm, SVD++ uses the explicit and implicit influence of rated items, by further incorporating both the explicit and implicit influence of trusted and trusting users on the guess of items for an active user. The proposed technique extends SVD++ with social trust information. Experimental results on the four data sets demonstrate that Trust SVD achieves accuracy than other recommendation techniques.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 616 ◽  
Author(s):  
Jia Zhao ◽  
Gang Sun

A recommender system can effectively solve the problem of information overload in the era of big data. Recent research on recommender systems, specifically Collaborative Filtering, has focused on Matrix Factorization methods, which have been shown to have excellent performance. However, these methods do not pay attention to the influence of a user’s rating characteristics, which are especially important for the accuracy of prediction or recommendation. Therefore, in order to get better performance, we propose a novel method based on matrix factorization. We consider that the user’s rating score is composed of two parts: the real score, which is decided by the user’s preferences; and the bias score, which is decided by the user’s rating characteristics. We then analyze the user’s historical behavior to find his rating characteristics by using the matrix factorization technique and use them to adjust the final prediction results. Finally, by comparing with the latest algorithms on the open datasets, we verified that the proposed method can significantly improve the accuracy of recommender systems and achieve the best performance in terms of prediction accuracy criterion over other state-of-the-art methods.


2020 ◽  
Vol 13 (5) ◽  
pp. 977-986
Author(s):  
Srinivasa Rao Kongara ◽  
Dasika Sree Rama Chandra Murthy ◽  
Gangadhara Rao Kancherla

Background: Text summarization is the process of generating a short description of the entire document which is more difficult to read. This method provides a convenient way of extracting the most useful information and a short summary of the documents. In the existing research work, this is focused by introducing the Fuzzy Rule-based Automated Summarization Method (FRASM). Existing work tends to have various limitations which might limit its applicability to the various real-world applications. The existing method is only suitable for the single document summarization where various applications such as research industries tend to summarize information from multiple documents. Methods: This paper proposed Multi-document Automated Summarization Method (MDASM) to introduce the summarization framework which would result in the accurate summarized outcome from the multiple documents. In this work, multi-document summarization is performed whereas in the existing system only single document summarization was performed. Initially document clustering is performed using modified k means cluster algorithm to group the similar kind of documents that provides the same meaning. This is identified by measuring the frequent term measurement. After clustering, pre-processing is performed by introducing the Hybrid TF-IDF and Singular value decomposition technique which would eliminate the irrelevant content and would result in the required content. Then sentence measurement is one by introducing the additional metrics namely Title measurement in addition to the existing work metrics to accurately retrieve the sentences with more similarity. Finally, a fuzzy rule system is applied to perform text summarization. Results: The overall evaluation of the research work is conducted in the MatLab simulation environment from which it is proved that the proposed research method ensures the optimal outcome than the existing research method in terms of accurate summarization. MDASM produces 89.28% increased accuracy, 89.28% increased precision, 89.36% increased recall value and 70% increased the f-measure value which performs better than FRASM. Conclusion: The summarization processes carried out in this work provides the accurate summarized outcome.


Sign in / Sign up

Export Citation Format

Share Document