scholarly journals Study of Fractional Analytic Functions and Local Fractional Calculus

Author(s):  
Chii-Huei Yu

In this present paper, the role of fractional analytic function in local fractional calculus is studied. Some important properties and theorems in local fractional calculus are discussed, such as product rule, quotient rule, chain rule, fundamental theorem of local fractional calculus, change of variable, integration by parts and so on. In addition, we propose several examples and formulas of local fractional calculus.

2021 ◽  
Author(s):  
CHII-HUEI YU

Abstract. In this article, we study the fundamental theorem of fractional calculus and integration by parts for fractional calculus, regarding the Jumarie type of modified Riemann-Liouville fractional derivatives. On the other hand, some examples are proposed to illustrate the applications of these two important theorems.


2016 ◽  
Vol 14 (1) ◽  
pp. 1122-1124 ◽  
Author(s):  
Ricardo Almeida ◽  
Małgorzata Guzowska ◽  
Tatiana Odzijewicz

AbstractIn this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly.


2021 ◽  
Vol 19 (1) ◽  
pp. 329-337
Author(s):  
Huo Tang ◽  
Kaliappan Vijaya ◽  
Gangadharan Murugusundaramoorthy ◽  
Srikandan Sivasubramanian

Abstract Let f k ( z ) = z + ∑ n = 2 k a n z n {f}_{k}\left(z)=z+{\sum }_{n=2}^{k}{a}_{n}{z}^{n} be the sequence of partial sums of the analytic function f ( z ) = z + ∑ n = 2 ∞ a n z n f\left(z)=z+{\sum }_{n=2}^{\infty }{a}_{n}{z}^{n} . In this paper, we determine sharp lower bounds for Re { f ( z ) / f k ( z ) } {\rm{Re}}\{f\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}\left(z)\} , Re { f k ( z ) / f ( z ) } {\rm{Re}}\{{f}_{k}\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}f\left(z)\} , Re { f ′ ( z ) / f k ′ ( z ) } {\rm{Re}}\{{f}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}^{^{\prime} }\left(z)\} and Re { f k ′ ( z ) / f ′ ( z ) } {\rm{Re}}\{{f}_{k}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}^{^{\prime} }\left(z)\} , where f ( z ) f\left(z) belongs to the subclass J p , q m ( μ , α , β ) {{\mathcal{J}}}_{p,q}^{m}\left(\mu ,\alpha ,\beta ) of analytic functions, defined by Sălăgean ( p , q ) \left(p,q) -differential operator. In addition, the inclusion relations involving N δ ( e ) {N}_{\delta }\left(e) of this generalized function class are considered.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ming-Sheng Hu ◽  
Ravi P. Agarwal ◽  
Xiao-Jun Yang

We introduce the wave equation in fractal vibrating string in the framework of the local fractional calculus. Our particular attention is devoted to the technique of the local fractional Fourier series for processing these local fractional differential operators in a way accessible to applied scientists. By applying this technique we derive the local fractional Fourier series solution of the local fractional wave equation in fractal vibrating string and show the fundamental role of the Mittag-Leffler function.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Long-Fei Wang ◽  
Xiao-Jun Yang ◽  
Dumitru Baleanu ◽  
Carlo Cattani ◽  
Yang Zhao

We suggest a new model of the scale conservation equation in the mathematical theory of vehicular traffic flow on the fractal network based on the local fractional calculus.


2019 ◽  
Vol 27 (2) ◽  
pp. 167-177
Author(s):  
Dorina Răducanu

AbstractIn this paper, we obtain the estimates for the second Hankel determinant for a class of analytic functions defined by q-derivative operator and subordinate to an analytic function.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Chun-Ying Long ◽  
Yang Zhao ◽  
Hossein Jafari

The forest new gap models via local fractional calculus are investigated. The JABOWA and FORSKA models are extended to deal with the growth of individual trees defined on Cantor sets. The local fractional growth equations with local fractional derivative and difference are discussed. Our results are first attempted to show the key roles for the nondifferentiable growth of individual trees.


2019 ◽  
Vol 100 (3) ◽  
pp. 489-497
Author(s):  
SILVESTRU SEVER DRAGOMIR

In this paper we provide some bounds for the quantity $\Vert f(y)-f(x)\Vert$, where $f:D\rightarrow \mathbb{C}$ is an analytic function on the domain $D\subset \mathbb{C}$ and $x$, $y\in {\mathcal{B}}$, a Banach algebra, with the spectra $\unicode[STIX]{x1D70E}(x)$, $\unicode[STIX]{x1D70E}(y)\subset D$. Applications for the exponential and logarithmic functions on the Banach algebra ${\mathcal{B}}$ are also given.


Sign in / Sign up

Export Citation Format

Share Document