Insilico Search for Potential DNA Binding Domain of Human Zinc Finger Protein Sp1

Author(s):  
Sirisha Kaniganti

Specificity protein 1 (Sp1) belongs to a family of ubiquitously expressed, C2H2-type zinc finger-containing DNA binding proteins that activate or repress transcription of many genes in response to physiological and pathological stimuli. Specificity protein 1 is considered to be a constitutively expressed transcription factor and has been implicated in the regulation of a wide variety of housekeeping genes, tissue-specific genes, and genes involved in the regulation of growth. In order to determine the binding affinity of Sp1 zinc finger domains, the total energy for each and every possible combination of GC box and Zn finger motifs using Hex server, Model IT software’s is calculated. According to the findings of this study, the design of multi-zinc finger proteins with a variety of sequence specificities will be easier to accomplish. Among the three motifs present in Specificity protein 1, motifs 1 and 2 have higher binding affinity than motif 3.

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6296
Author(s):  
Elena Cesaro ◽  
Angelo Lupo ◽  
Roberta Rapuano ◽  
Arianna Pastore ◽  
Michela Grosso ◽  
...  

The transcription factor ZNF224 is a Kruppel-like zinc finger protein that consists of 707 amino acids and contains 19 tandemly repeated C2H2 zinc finger domains that mediate DNA binding and protein–protein interactions. ZNF224 was originally identified as a transcriptional repressor of genes involved in energy metabolism, and it was demonstrated that ZNF224-mediated transcriptional repression needs the interaction of its KRAB repressor domain with the co-repressor KAP1 and its zinc finger domains 1–3 with the arginine methyltransferase PRMT5. Furthermore, the protein ZNF255 was identified as an alternative isoform of ZNF224 that possesses different domain compositions mediating distinctive functional interactions. Subsequent studies showed that ZNF224 is a multifunctional protein able to exert different transcriptional activities depending on the cell context and the variety of its molecular partners. Indeed, it has been shown that ZNF224 can act as a repressor, an activator and a cofactor for other DNA-binding transcription factors in different human cancers. Here, we provide a brief overview of the current knowledge on the multifaceted interactions of ZNF224 and the resulting different roles of this protein in various cellular contexts.


Redox Biology ◽  
2017 ◽  
Vol 11 ◽  
pp. 135-143 ◽  
Author(s):  
Jian-Ying Chuang ◽  
Tzu-Jen Kao ◽  
Shu-Hui Lin ◽  
An-Chih Wu ◽  
Pin-Tse Lee ◽  
...  

Genetics ◽  
1992 ◽  
Vol 131 (4) ◽  
pp. 905-916 ◽  
Author(s):  
M Crozatier ◽  
K Kongsuwan ◽  
P Ferrer ◽  
J R Merriam ◽  
J A Lengyel ◽  
...  

Abstract The Drosophila serendipity (sry) delta (delta) zinc finger protein is a sequence-specific DNA binding protein, maternally inherited by the embryo and present in nuclei of transcriptionally active cells throughout fly development. We report here the isolation and characterization of four ethyl methanesulfate-induced zygotic lethal mutations of different strengths in the sry delta gene. For the stronger allele, all of the lethality occurs during late embryogenesis or the first larval instar. In the cases of the three weaker alleles, most of the lethality occurs during pupation; moreover, those adult escapers that emerge are sterile males lacking partially or completely in spermatozoa bundles. Genetic analysis of sry delta thus indicates that it is an essential gene, whose continued expression throughout the life cycle, notably during embryogenesis and pupal stage, is required for viability. Phenotypic analysis of sry delta hemizygote escaper males further suggests that sry delta may be involved in regulation of two different sets of genes: genes required for viability and genes involved in gonadal development. All four sry delta alleles are fully rescued by a wild-type copy of sry delta, but not by an additional copy of the sry beta gene, reinforcing the view that, although structurally related, these two genes exert distinct functions. Molecular characterization of the four sry delta mutations revealed that these mutations correspond to single amino acid replacements in the sry delta protein. Three of these replacements map to the same (third out of seven) zinc finger in the carboxy-terminal DNA binding domain; interestingly, none affects the zinc finger consensus residues. The fourth mutation is located in the NH2-proximal part of the protein, in a domain proposed to be involved in specific protein-protein interactions.


Biochemistry ◽  
2020 ◽  
Vol 59 (13) ◽  
pp. 1378-1390 ◽  
Author(s):  
Ly H. Nguyen ◽  
Tuyen T. Tran ◽  
Lien Thi Ngoc Truong ◽  
Hanh Hong Mai ◽  
Toan T. Nguyen

1990 ◽  
Vol 10 (3) ◽  
pp. 1259-1264 ◽  
Author(s):  
T Matsugi ◽  
K Morishita ◽  
J N Ihle

Activation of the Evi-1 zinc finger gene is a common event associated with transformation of murine myeloid leukemias. To characterize the gene product, we developed antisera against various protein domains. These antisera primarily detected a 145-kilodalton nuclear protein that bound double-stranded DNA. Binding was inhibited by chelating agents and partially restored by zinc ions.


1997 ◽  
Vol 272 (36) ◽  
pp. 22447-22455 ◽  
Author(s):  
Jia-Yuan Li ◽  
Milton A. English ◽  
Helen J. Ball ◽  
Patricia L. Yeyati ◽  
Samuel Waxman ◽  
...  

Author(s):  
Mazen Hamed ◽  
Reema Siam ◽  
Roza Zaid

Zinc finger proteins (ZFP) play important roles in cellular processes. The DNA binding region of ZFP consists of 3 zinc finger DNA binding domains connected by amino acid linkers, the sequence TGQKP connects ZF1 and ZF2, and TGEKP connects ZF2 with ZF3. Linkers act to tune the zinc finger protein in the right position to bind its DNA target, the type of amino acid residues and length of linkers reflect on ZF1-ZF2-ZF3 interactions and contribute to the search and recognition process of ZF protein to its DNA target. Linker mutations and the affinity of the resulting mutants to specific and nonspecific DNA targets were studied by MD simulations and MM_GB(PB)SA. The affinity of mutants to DNA varied with type and position of amino acid residue. Mutation of K in TGQKP resulted in loss in affinity due to the loss of positive K interaction with phosphates, mutation of G showed loss in affinity to DNA, WT protein and all linker mutants showed loss in affinity to a nonspecific DNA target, this finding confirms previous reports which interpreted this loss in affinity as due to ZF1 having an anchoring role, and ZF3 playing an explorer role in the binding mechanism. The change in ZFP-DNA affinity with linker mutations is discussed in view of protein structure and role of linker residues in binding.


Sign in / Sign up

Export Citation Format

Share Document