scholarly journals The Interaction between the Bulking Water and Pipe Surface and Their Correlations in Water Distribution System

2018 ◽  
Vol 7 (2) ◽  
pp. 83
Author(s):  
Ruilian Li ◽  
Ming-qing Feng ◽  
Xiao-hui Bai

The pipelines corrosion can result discolor and particle increase in tap water and the complaints from the consumers. It also has the economic and hydraulic impacts for the replacement of broken pipes and fouling of corroded pipes. This paper aimed to investigate the effect of processed drinking water on metal pipe corrosion in water distribution system and the relations between the bulking water quality and pipe corrosion. It was found that there is a close relation between iron corrosion and water quality parameters in water distribution pipelines. It was shown that lower pH and alkalinity can increase the corrosion rate, while higher chlorides and sulfate may cause pitting corrosion. DOC in pipe water would be beneficial for microbial induced corrosion.

2015 ◽  
Vol 24 (7) ◽  
pp. 907-915
Author(s):  
Seog-Moon Bae ◽  
Do-Hwan Kim ◽  
Hee-Jong Son ◽  
Dong-Hoon Choi ◽  
Ik-Sung Kim ◽  
...  

Author(s):  
Pirjo-Liisa Rantanen ◽  
Ilkka Mellin ◽  
Minna Keinänen-Toivola ◽  
Merja Ahonen ◽  
Riku Vahala

We studied the seasonal variation of nitrite exposure in a drinking water distribution system (DWDS) with monochloramine disinfection in the Helsinki Metropolitan Area. In Finland, tap water is the main source of drinking water, and thus the nitrite in tap water increases nitrite exposure. Our data included both the obligatory monitoring and a sampling campaign data from a sampling campaign. Seasonality was evaluated by comparing a nitrite time series to temperature and by calculating the seasonal indices of the nitrite time series. The main drivers of nitrite seasonality were the temperature and the water age. We observed that with low water ages (median: 6.7 h) the highest nitrite exposure occurred during the summer months, and with higher water ages (median: 31 h) during the winter months. With the highest water age (190 h), nitrite concentrations were the lowest. At a low temperature, the high nitrite concentrations in the winter were caused by the decelerated ammonium oxidation. The dominant reaction at low water ages was ammonium oxidation into nitrite and, at high water ages, it was nitrite oxidation into nitrate. These results help to direct monitoring appropriately to gain exact knowledge of nitrite exposure. Also, possible future process changes and additional disinfection measures can be designed appropriately to minimize extra nitrite exposure.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 668
Author(s):  
Alexandra Spyropoulou ◽  
Yannis G. Lazarou ◽  
Chrysi Laspidou

In recent years, mercury (Hg) concentration that exceeds the Maximum Contaminant Level Standard set by the World Health Organisation for drinking water has been detected in the groundwater of Skiathos Island in Greece. The island single source of urban water is groundwater; as a result, tap water has been characterised as unsafe for drinking and people rely on bottled water for their everyday needs. The origin and speciation of Hg in the aquifer is investigated with the use of the Pourbaix diagram, while the possible correlation with groundwater salinization due to seawater intrusion is examined.


2012 ◽  
Vol 518-523 ◽  
pp. 3703-3706
Author(s):  
Ling Ping Zhao ◽  
Fen Ge Zhang ◽  
Liang Fei Dong ◽  
Yong Wei ◽  
Bao Hua Tu ◽  
...  

According to the fuzziness of water quality in water distribution system, based on the simulation data of water quality obtained by using EPANET software,and applying entropy weight theory in the fuzzy evaluation of water quality, fuzzy evaluation model of water quality based on entropy weight and EPANET is established. Water quality in water distribution system of Hengshanqiao town is evaluated by using this method.Evaluation results are relatively objective and credible, proving that the method is simple and practical, scientific and reliable.


Sign in / Sign up

Export Citation Format

Share Document