scholarly journals Use of Bee-Borne Attractants for Pollination of Nonrewarding Flowers: Model System of Male-Sterile Tomato Flowers

Author(s):  
Abraham Hefetz ◽  
Justin O. Schmidt

The use of bee natural product for enhancing pollination is especially valuable in problematic crops that are generally avoided by bees. In the present research we attempted to enhance bee visitation to Male Sterile (M-S) tomato flowers generally used in the production of hybrid seeds. These flowers that lack both pollen and nectar are unattractive to bees that learn rapidly to avoid them. The specific objects were to elucidate the chemical composition of the exocrine products of two bumble bee species the North American Bombus impatiens and the Israeli B. terrestris. Of these, to isolate and identify a bee attractant which when sprayed on M-S tomato flowers will enhance bee visitation, and to provide a procedure of the pheromone application regime. During the research we realized that our knowledge of B. impatiens is too little and we narrowed the objective to learning the basic social behavior of the bees and the pattern of foraging in a flight chamber and how it is affected by biogenic amines. Colonies of B. impatiens are characterized by a high number of workers and a relatively small number of queens. Size differences between queens and workers are pronounced and the queen seems to have full control over egg laying. Only about 9% of the workers in mature colonies had mature oocytes, and there were no signs of a "competition phase" as we know in B. terrestris. Queens and workers differ in their exocrine bouquet. Queen's Dufour's gland possesses a series of linear, saturated and unsaturated hydrocarbons whereas that of workers contains in addition a series of wax-type esters. Bees were trained to either visit or avoid artificially scented electronic flowers in a flight chamber. Since bee also learned to avoid scented non-rewarding flowers we attempted to interfere with this learning. We tested the effect of octopamine, a biogenic amine affecting bee behavior, on the choice behavior of free-flying bumblebees. Our results show that octopamine had no significant effect on the bees' equilibrium choice or on the overall rate of the behavioral change in response to the change in reward. Rather, octopamine significantly affected the time interval between the change in reward status and the initiation of behavioral change in the bee. In B. terrestris we studied the foraging pattern of the bees on tomato flowers in a semi commercial greenhouse in Yad Mordechai. Bee learned very quickly to avoid the non- rewarding M-S flowers, irrespective of their arrangement in the plot, i.e., their mixing with normal, pollen bearing flowers. However, bees seem to "forget" this information during the night since the foraging pattern repeats itself the next morning. Several exocrine products were tested as visitation enhancers. Among these, tarsal gland extracts are the most attractive. The compounds identified in the tarsal gland extract are mostly linear saturated hydrocarbons with small amounts of unsaturated ones. Application was performed every second day on leaves in selected inflorescences. Bee visitation increased significantly in the treated inflorescences as compared to the control, solvent treated. Treatment of the anthers cone was more effective than on the flower petals or the surrounding leaves. Methanol proved to be a non-flower-destructive solvent. We have shown that bumble bees (B. terrestris) can be manipulated by bee-borne attractants to visit non-rewarding flowers. We have further demonstrated that the bees learning ability can be manipulated by applying exogenously octopamine. Both methods can be additively applied in enhancing pollination of desired crops. Such manipulation will be especially useful in tomato cultivation for hybrid seed production.

2018 ◽  
Vol 7 (1) ◽  
pp. 58-64
Author(s):  
Yuri Gennadievich Lamekhov

The paper deals with one of the aspects of bird early ontogenesis biology - egg incubation duration, which was defined as the time interval between egg laying and hatching from it. The oomorphological parameters are determined taking into account the ordinal number of the laid eggs. Parameters of early ontogeny of birds are studied on the example of colonially nesting species: blackberry toadstool ( Podiceps nigricollis C.L. Brehm.) and lake gull ( Larus ridibundus L.). Within the colonial settlement of these species, the biological center and the periphery of the colony were isolated. When studying the parameters of early ontogeny of birds and oomorphological characteristics, the same number of eggs was taken into account. During field and laboratory studies it was found that the incubation of eggs lasts longer in eggs from the nests of the biological center of the colony. The first eggs are incubated longer. These features clearly manifested in the early ontogeny of the gull. The increase in the egg incubation duration occurs against the background of an increase in their mass and a decrease in the concentration of lysozyme in the protein shell of the egg. Egg incubation duration is one of the results of embryonalization as a way of evolution of ontogeny. The manifestation of the results of embryogenesis was revealed for the first eggs in the nests of the biological center of the colony. Embryonalization leads to an increase in egg incubation duration as well as to a decrease in the intensity of elimination in early ontogenesis, which affects the number of individuals breeding in the colony and, accordingly, the structure of the colonial settlement of birds.


2020 ◽  
Vol 10 (4) ◽  
pp. 1309-1318
Author(s):  
Tzu-Kai Lin ◽  
Ya-Ping Lin ◽  
Shun-Fu Lin

Male sterility has been widely used in hybrid seed production in Brassica, but not in B. rapa ssp. chinensis, and genetic models of male sterility for this subspecies are unclear. We discovered a spontaneous mutant in B. rapa ssp. chinensis. A series of progeny tests indicated that male sterility in B. rapa ssp. chinensis follows a three-allele model with BrMsa, BrMsb, and BrMsc. The male sterility locus has been mapped to chromosome A07 in BC1 and F2 populations through genotyping by sequencing. Fine mapping in a total of 1,590 F2 plants narrowed the male sterility gene BrMs to a 400 kb region, with two SNP markers only 0.3 cM from the gene. Comparative gene mapping shows that the Ms gene in B. rapa ssp. pekinensis is different from the BrMs gene of B. rapa ssp. chinensis, despite that both genes are located on chromosome A07. Interestingly, the DNA sequence orthologous to a male sterile gene in Brassica napus, BnRf, is within 400 kb of the BrMs locus. The BnRf orthologs of B. rapa ssp. chinensis were sequenced, and one KASP marker (BrMs_indel) was developed for genotyping based on a 14 bp indel at intron 4. Cosegregation of male sterility and BrMs_indel genotypes in the F2 population indicated that BnRf from B. napus and BrMs from B. rapa are likely to be orthologs. The BrMs_indel marker developed in this study will be useful in marker-assisted selection for the male sterility trait.


1981 ◽  
Vol 23 (2) ◽  
pp. 195-208 ◽  
Author(s):  
M. C. Albertsen ◽  
R. L. Phillips

Thirteen nonallelic genetic-male sterile loci of maize (Zea mays L.) were investigated cytologically to determine the microsporogenesis breakdown characteristics for each mutant. These male-sterile mutants included ms1, ms2, ms5, ms6, ms7, ms8, ms9, ms10, ms11, ms12, ms13, ms14, and ms17 in A632 and 0h43 inbred backgrounds. Male-sterile mutants ms8 and ms9 resulted in abnormal microspore (pollen) mother cells that exhibited nearly normal nuclear development but abnormal cellular development. These mutants had the earliest effect on microsporogenesis. Male-sterile mutants ms5, ms11, and ms14 had the latest effect on microsporogenesis in that microspores developed until the microspore mitosis stage. Other male-sterile mutants seemed to have similar expressions when compared with each other. Mutants ms2 and ms7 both lacked significant microspore wall formation at the time of microspore collapse. Mutants ms10 and ms13 were similar in that the microspore wall developed to approximately one-half the normal thickness before microspore collapse. A unique feature of ms1 was the occurrence of an abnormally thickened microspore wall. Almost complete microspore wall development occurred in ms12 plants despite nuclear degradation. Mutant ms6 was cytologically and genetically similar to polymitotic (po). Mutant ms17 had variable expression that most notably affected spindle formation. These observations may be useful in utilizing genetic male sterility in maize hybrid seed production schemes.


1986 ◽  
Vol 15 (3) ◽  
pp. 104-109 ◽  
Author(s):  
Joseph E. Laferrière

This article reviews past successes and future potential of the use of interspecific hybrids in the breeding of cultivated Helianthus annuus, with emphasis on the necessity for conservation of non-cultivated germplasm. The topics discussed include resistance to diseases and other pests; the development of male-sterile lines for hybrid seed production; introduction of genes for various agronomic traits, such as drought resistance and cold tolerance; and attempts to change the chemical composition of the harvested crop.


1995 ◽  
Vol 5 (3) ◽  
pp. 129-135 ◽  
Author(s):  
F. Corbineau ◽  
M. A. Picard ◽  
A. Bonnet ◽  
D. Côme

AbstractVarious sources of germination heterogeneity of carrot (Daucus carota L.) seeds were investigated: germination conditions (temperature, oxygen tension), size of seeds, position of the umbels on the mother plants, and pollination conditions of male-sterile plants in hybrid seed production. All seeds tested germinated over a large range of temperatures (5–35°C). However, low temperatures (5–10°C) and temperatures above 30°C reduced germination. Seeds were also sensitive to oxygen deprivation, but their sensitivity to hypoxia depended on the cultivar. The germination responses of seeds to temperature and oxygen depended on their size, particularly at sub- and supra-optimal temperatures. The largest seeds (1.8–2.1 mm) of commercial lots usually germinated better at 5°C and were more sensitive to oxygen deprivation than the smallest ones (1.2–1.8 mm). Experiments performed with open pollinated plants showed that seeds produced by umbels of first and second orders germinated faster and at higher percentages than those collected on third-order umbels. Evidence for the involvement of pollination conditions in the germination quality of carrot seeds was given by pollination by honey bees of male-sterile plants cultivated at various distances from the pollen donors. The longer the distance of the mother plants from the pollinating plants, the lower the seed yield, the heavier the mean seed weight, the more difficult the germination of seeds, and the higher their sensitivity to oxygen deprivation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaming Cai ◽  
Zhishen Ma ◽  
Collins Otieno Ogutu ◽  
Lei Zhao ◽  
Liao Liao ◽  
...  

Male sterility is an important agronomic trait for hybrid vigor utilization and hybrid seed production, but its underlying mechanisms remain to be uncovered. Here, we investigated the mechanisms of male sterility in peach using a combined cytology, physiology, and molecular approach. Cytological features of male sterility include deformed microspores and tapetum cells along with absence of pollen grains. Microspores had smaller nucleus at the mononuclear stage and were compressed into belts and subsequently disappeared in the anther cavity, whereas tapetum cells were swollen and vacuolated, with a delayed degradation to flowering time. Male sterile anthers had an ROS burst and lower levels of major antioxidants, which may cause abnormal development of microspores and tapetum, leading to male sterility in peach. In addition, the male sterility appears to be cytoplasmic in peach, which could be due to sequence variation in the mitochondrial genome. Our results are helpful for further investigation of the genetic mechanisms underlying male sterility in peach.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1168e-1168 ◽  
Author(s):  
Edward C. Tigchelaar

The coupling phase linkages have been synthesized between the gene aw (without anthocyanin) and the male sterile gene ms15 (and its alleles ms26, ms47, and an Israeli source of male sterility). Less than 2 map units separate aw and ms15 on chromosome 2, providing a convenient seedling marker gene to rapidly identify male sterility for both inbred development and hybrid seed production. The seedling marker also provides a convenient marker to rapidly assess hybrid seed purity. Unique features of each of the alleles involved in male sterility and their use in inbred and hybrid development will be described.


Plant Disease ◽  
1998 ◽  
Vol 82 (5) ◽  
pp. 592-592 ◽  
Author(s):  
T. Isakeit ◽  
G. N. Odvody ◽  
R. A. Shelby

In March 1997, ergot was found on sorghum (Sorghum bicolor (L.) Moench) regrowth in several abandoned commercial grain sorghum fields in Cameron and Hidalgo counties in the Lower Rio Grande Valley (LRGV) of Texas. White sphacelia in florets produced honeydew containing macrospores (hyaline, oblong to oval, 10 to 25 μm × 5 to 7 μm) and microspores (hyaline, spherical, 3 μm in diameter). Macrospores germinated iteratively to form secondary conidia when placed on water agar and in situ following rain. Secondary conidia were hyaline, pyriform, with a protruding hilum, and measured 10 to 17 μm × 5 to 7 μm. High-pressure liquid chromatography analysis detected the alkaloid di-hydroergosine in sphacelia, which is unique to C. africana (1). The pathogen was also confirmed on adjacent johnsongrass (S. halepense). The spread of ergot across Texas was associated with the progressive maturation of the commercial sorghum crop as follows: LRGV (mid-May), Coastal Bend near Corpus Christi (June), Winter Garden area southwest of San Antonio (July), and the seed production region of the Texas Panhandle (mid-August). Ergot incidence ranged from a trace to 10% of the heads in (self-fertile) grain sorghum fields of the LRGV. Most heads had only a few infected florets, but a few heads had 35 to 50% of the florets infected. Only trace amounts were found in grain sorghum fields in other areas of the state. Incidence and severity of ergot were greatest in fields of male-sterile sorghums grown for forage. Ergot was generally low in primary heads of male-sterile sorghums in hybrid seed production fields but, in the absence of pollen, axillary tillers sometimes developed high levels of ergot. The major impact of sorghum ergot is expected to be in hybrid seed production fields in the High Plains of Texas. Reference: (1) D. E. Frederickson et al. Mycol. Res. 95:1101, 1991.


Sign in / Sign up

Export Citation Format

Share Document