scholarly journals Water consumption and productivity of agricultural crops under subsurface drip irrigation

2021 ◽  
pp. 299-305
Author(s):  
A.P. Shatkovskyi ◽  
F.S. Melnychuk ◽  
M.S. Retman ◽  
O.I. Gulenko ◽  
V.V. Kalilei
Author(s):  
M. I. Romashchenko ◽  
A. P. Shatkovskyi ◽  
A. S. Sardak ◽  
Y. A. Cherevichny ◽  
N. A. Didenko ◽  
...  

The results of experimental researches on studying of features of formation of a water mode of soils, water consumption processes, and corn yield under different schemes of irrigation pipelines (IP) under subsurface drip irrigation (SDI) in the Steppe of Ukraine. The wetting zone of dark-chestnut residual-saline sandy soil (SI "SF "Brylivske") changed. There is a shift of the center relative to the drip water outlet into deeper horizons of the soil profile (up to 52 cm) with the increasing norm; soil layer 0-15 cm is almost not moistened, regardless of watering rate. At a distance of IP 1,0 m closing of wetting zones, occur at irrigation rates of 2,7 m3/100 running meter (r. m), and at a distance of IP 1,4 m does not occur even at irrigation rates of 3,7 m3/100 r. m, while the depth of wetting reaches 90 cm. The wetting zone of chernozem sandy loam on the loess species (SI "SF "Velyki Klyny") with irrigation rates of 2,7 m3/100 r. m was observed on the soil surface. The maximum depth of wetting, with irrigation norms of 3,7 m3/100 r. m, reached 70 cm with a maximum diameter of 79 cm at a depth of 25 cm. Closing of wetting zones was not observed. Studies at SI "SF "Brylivske" have confirmed that the depth of IP placement (on the soil surface or at a depth of 30 cm) influenced the formation of the soil water regime and the corn yield. The minimum total water consumption was 6271 m3/ha under drip irrigation (DI) (IP 1,4 m), 17 % more than SDI (IP 1,4 m), and 29% more than SDI (IP 1,0 m). The highest yield was obtained in the case of DI (IP 1,4 m) of 15,72 t/ha. SDI (IP 1,0 m) received 13,93 t/ha, and SDI (IP 1,4 m) received 13,50 t/ha. The distance between the IP in 1,0 m and 1.4 m of the SDI system did not significantly affect corn yield (13.93 and 13.50 t/ha, respectively), but at a distance of IP 1.4 m, the water consumption ratio was 6.8% less compared to IP 1,0 m. The value of the irrigation rate in the variants SDI (IP 1.0 m) was higher than SDI (IP 1,4 m) by 13,6 %. Therefore, in terms of irrigation water consumption and capital expenditures, the SDI (IP 1,4 m) is more economical. Experimental studies conducted in the SI "SF "Velyki Klyny" show that the depth of placement of IP (on the soil surface or at a depth of 20 cm) did not affect the corn yield. For DI (IP 1,0 m) the yield was 12,00 t/ha and for SDI (IP 1.0 m) was 12,10 t/ha, with a water consumption ratio of 533,8 m3/t, and for DI (IP 1,0 m) by 3,6 % more. The research results confirm the importance of the parameters of SDI system for the formation of soil water regime and, accordingly, the realization of the potential of varieties and hybrids of crops for their cultivation by SDI.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xuesong Cao ◽  
Yayang Feng ◽  
Heping Li ◽  
Hexiang Zheng ◽  
Jun Wang ◽  
...  

A field experiment was conducted for the purpose of examining the effects of different combinations of water and fertilizer applications on the water consumption and yields of alfalfa under subsurface drip irrigation (SDI). The results showed that the jointing and branching stages were the key stages for alfalfa water requirement. The water consumption had varied greatly (from 130 to 170 mm) during the growth period of each alfalfa crop. The water consumption during the whole growth period was approximately 500 mm, and the maximum water consumption intensity was 3.64 mm·d-1. The overall changes in water consumption and yields during the growth period of the alfalfa displayed trends of first increasing and then decreasing. The sensitivities of the yields to water changes were much higher than that of fertilizer. The water use efficiency (WUE) of the alfalfa was determined to range from 1.68 to 3.20 kg·m-3, and the rate of growth had ranged from 4.85% to 51.77%. The WUE and rate of growth of the alfalfa indicated the following trend: second crop > third crop > first crop. The results of frequency analysis based on the water-nitrogen-yield regression equation are the following: irrigation amounts of 142~165 mm and nitrogen application of 61~80 kg·hm-2 have a 95% probability of obtaining a hay yield of alfalfa of more than 11903 kg·hm-2. These results suggest that SDI is a promising irrigation method, which can increase the WUE and hay yield of alfalfa under the condition of SDI within an appropriate amount of water and nitrogen fertilizer, and too low or too high water and nitrogen fertilizer will adversely affect the WUE and hay yield of alfalfa.


2002 ◽  
Vol 66 (1) ◽  
pp. 178 ◽  
Author(s):  
Thomas L. Thompson ◽  
Thomas A. Doerge ◽  
Ronald E. Godin

2000 ◽  
Vol 42 (1-2) ◽  
pp. 75-79 ◽  
Author(s):  
C. Campos ◽  
G. Oron ◽  
M. Salgot ◽  
L. Gillerman

A critical objective for any wastewater reuse programme is to minimise health and environmental hazard. When applying wastewater to soil–plant systems, it is to be noted that the passage of water through the soil considerably reduces the number of microorganisms carried by the reclaimed wastewater. Factors that affect survival include number and type of microorganisms, soil organic matter content, temperature, moisture, pH, rainfall, sunlight, protection provided by foliage and antagonism by soil microflora. The purpose of this work was to examine the behaviour of fecal pollution indicators in a soil irrigated with treated wastewater under onsurface and subsurface drip irrigation. The experiment was conducted in a vineyard located at a commercial farm near the City of Arad (Israel). Wastewater and soil samples were monitored during the irrigation period and examined for fecal coliforms, somatic and F+ coliphages and helminth eggs. Physico-chemical parameters were controlled in order to determine their relationship with removal of microorganisms. The results showed high reduction of the concentration of microorganisms when wastewater moves through the soil; and a good correlation between the reduction of fecal pollution indicators and moisture content, organic matter concentration and pH. The application of secondary treated domestic wastewater in this specific soil and under these irrigation systems affect the survival of microorganisms, thus reducing the health and environmental risk.


2019 ◽  
pp. 397-404
Author(s):  
J.V. Prado-Hernández ◽  
F.R. Hernández-Saucedo ◽  
M. Carrillo-García ◽  
J. Pineda-Pineda ◽  
A.H. Gutiérrez-Campos ◽  
...  

2011 ◽  
Vol 42 (22) ◽  
pp. 2778-2794 ◽  
Author(s):  
P. G. Hunt ◽  
K. C. Stone ◽  
T. A. Matheny ◽  
M. B. Vanotti ◽  
A. A. Szogi ◽  
...  

2009 ◽  
Vol 38 (4) ◽  
pp. 1749-1756 ◽  
Author(s):  
J. C. Burns ◽  
K. C. Stone ◽  
P. G. Hunt ◽  
M. B. Vanotti ◽  
K. B. Cantrell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document