scholarly journals Aspects of formation of soil water regime and water consumption of corn under subsurface drip irrigation

Author(s):  
M. I. Romashchenko ◽  
A. P. Shatkovskyi ◽  
A. S. Sardak ◽  
Y. A. Cherevichny ◽  
N. A. Didenko ◽  
...  

The results of experimental researches on studying of features of formation of a water mode of soils, water consumption processes, and corn yield under different schemes of irrigation pipelines (IP) under subsurface drip irrigation (SDI) in the Steppe of Ukraine. The wetting zone of dark-chestnut residual-saline sandy soil (SI "SF "Brylivske") changed. There is a shift of the center relative to the drip water outlet into deeper horizons of the soil profile (up to 52 cm) with the increasing norm; soil layer 0-15 cm is almost not moistened, regardless of watering rate. At a distance of IP 1,0 m closing of wetting zones, occur at irrigation rates of 2,7 m3/100 running meter (r. m), and at a distance of IP 1,4 m does not occur even at irrigation rates of 3,7 m3/100 r. m, while the depth of wetting reaches 90 cm. The wetting zone of chernozem sandy loam on the loess species (SI "SF "Velyki Klyny") with irrigation rates of 2,7 m3/100 r. m was observed on the soil surface. The maximum depth of wetting, with irrigation norms of 3,7 m3/100 r. m, reached 70 cm with a maximum diameter of 79 cm at a depth of 25 cm. Closing of wetting zones was not observed. Studies at SI "SF "Brylivske" have confirmed that the depth of IP placement (on the soil surface or at a depth of 30 cm) influenced the formation of the soil water regime and the corn yield. The minimum total water consumption was 6271 m3/ha under drip irrigation (DI) (IP 1,4 m), 17 % more than SDI (IP 1,4 m), and 29% more than SDI (IP 1,0 m). The highest yield was obtained in the case of DI (IP 1,4 m) of 15,72 t/ha. SDI (IP 1,0 m) received 13,93 t/ha, and SDI (IP 1,4 m) received 13,50 t/ha. The distance between the IP in 1,0 m and 1.4 m of the SDI system did not significantly affect corn yield (13.93 and 13.50 t/ha, respectively), but at a distance of IP 1.4 m, the water consumption ratio was 6.8% less compared to IP 1,0 m. The value of the irrigation rate in the variants SDI (IP 1.0 m) was higher than SDI (IP 1,4 m) by 13,6 %. Therefore, in terms of irrigation water consumption and capital expenditures, the SDI (IP 1,4 m) is more economical. Experimental studies conducted in the SI "SF "Velyki Klyny" show that the depth of placement of IP (on the soil surface or at a depth of 20 cm) did not affect the corn yield. For DI (IP 1,0 m) the yield was 12,00 t/ha and for SDI (IP 1.0 m) was 12,10 t/ha, with a water consumption ratio of 533,8 m3/t, and for DI (IP 1,0 m) by 3,6 % more. The research results confirm the importance of the parameters of SDI system for the formation of soil water regime and, accordingly, the realization of the potential of varieties and hybrids of crops for their cultivation by SDI.

2020 ◽  
Vol 18 (1) ◽  
pp. e1201
Author(s):  
Ahmed A. Al-Othman ◽  
Mohamed A. Mattar ◽  
Mohammed A. Alsamhan

Aim of study: We investigated water evaporation of the soil surface and the soil water distribution under different mulching techniques using subsurface drip irrigation (SDI) system.Area of study: The experiment was conducted at the Agricultural Research and Experimental Farm in Dirab, Riyadh, Saudi Arabia, locating 24.4195° N, 46.65° E, and 552 m altitude.Material and methods: The two types of soil surface mulching were black plastic film (BPF) and palm tree waste (PTW), with no mulching (NM) as control. The two drip line depths from the soil surface (DL) were 15 cm and 25 cm, and surface drip irrigation (DI) was the control.Main results: In SDI, the use of BPF or PTW mulching resulted in enhanced water retention capacity of the soil and an approximately 6% water saving, compared with NM. The amounts of water saved at DL of 15 cm (19-24 mm) were greater than those at DL of 25 cm (15-20 mm), whereas the DI used the highest amount of applied water. The distribution of soil water content for BPF and PTW were found to be more uniform than NM.Research highlights: It is advised to mulch the soil with PTW due to lower costs and through a DL of 15 cm.


2013 ◽  
Vol 12 (1) ◽  
pp. CM-2013-0122-01-RS ◽  
Author(s):  
Ronald B. Sorensen ◽  
Christopher L. Butts ◽  
Marshall C. Lamb

Geoderma ◽  
2021 ◽  
Vol 382 ◽  
pp. 114777
Author(s):  
Leonor Rodríguez-Sinobas ◽  
Sergio Zubelzu ◽  
Juan J. Martín-Sotoca ◽  
Ana M. Tarquis

EDIS ◽  
2013 ◽  
Vol 2013 (4) ◽  
Author(s):  
Lincoln Zotarelli ◽  
Libby Rens ◽  
Charles Barrett ◽  
Daniel J. Cantliffe ◽  
Michael D. Dukes ◽  
...  

In terms of water use efficiency, the traditional seepage irrigation systems commonly used in areas with high water tables are one of the most inefficient methods of irrigation, though some irrigation management practices can contribute to better soil moisture uniformity. Subsurface drip irrigation systems apply water below the soil surface by microirrigation, improving the water distribution and time required to raise the water table for seepage irrigation. This 6-page fact sheet was written by Lincoln Zotarelli, Libby Rens, Charles Barrett, Daniel J. Cantliffe, Michael D. Dukes, Mark Clark, and Steven Lands, and published by the UF Department of Horticultural Sciences, March 2013. http://edis.ifas.ufl.edu/hs1217


Sign in / Sign up

Export Citation Format

Share Document