scholarly journals Homogeneous Basis for Continuous Geometry

Author(s):  
Fumitomo Maeda
1962 ◽  
Vol 5 (2) ◽  
pp. 111-121 ◽  
Author(s):  
G. Grätzer ◽  
Maria J. Wonenburger

Let L be a complemented, χ-complete modular lattice. A theorem of Amemiya and Halperin (see [l], Theorem 4.3) asserts that if the intervals [O, a] and [O, b], a, bεL, are upper χ-continuous then [O, a∪b] is also upper χ-continuous. Roughly speaking, in L upper χ-continuity is additive. The following question arises naturally: is χ-completeness an additive property of complemented modular lattices? It follows from Corollary 1 to Theorem 1 below that the answer to this question is in the negative.A complemented modular lattice is called a Von Neumann geometry or continuous geometry if it is complete and continuous. In particular a complete Boolean algebra is a Von Neumann geometry. In any case in a Von Neumann geometry the set of elements which possess a unique complement form a complete Boolean algebra. This Boolean algebra is called the centre of the Von Neumann geometry. Theorem 2 shows that any complete Boolean algebra can be the centre of a Von Neumann geometry with a homogeneous basis of order n (see [3] Part II, definition 3.2 for the definition of a homogeneous basis), n being any fixed natural integer.


2020 ◽  
Vol 64 (11) ◽  
pp. 1825-1831
Author(s):  
Gustav Hultgren ◽  
Zuheir Barsoum

Abstract In the current study a method to determine the location of fracture initiation for non-load carrying fillet welds based on continuous geometry measurements is proposed. Measurements and weld quality evaluation were carried out on welded specimens using the Winteria® software qWeld. One hundred nineteen specimens were produced, scanned, and fatigue tested until failure. The fracture surfaces have been investigated in order to find the location(s) for most probable point(s) of initiation. These data were then used to fit the proposed model parameters used to predict the point of initiation. Local weld geometry measurements were extracted from the predicted fracture initiation location(s) to analyse the correlation between local weld geometry and fatigue life. It was observed that fatigue life and leg length were positively correlated and that strong correlations exist between the individual geometrical parameters with regard to location of the fatigue crack initiation.


Order ◽  
1985 ◽  
Vol 1 (3) ◽  
pp. 301-305 ◽  
Author(s):  
Israel Halperin
Keyword(s):  

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1655
Author(s):  
Dening Luo ◽  
Jianwei Zhang

Anti-aliasing plays a decisive role in enhancing immersion experience in games and 3D visualization fields. In general, hardware anti-aliasing is not directly compatible with deferred shading. It is challenging to detect geometry edges accurately from sub-pixel to alleviate artifacts. In this paper, we propose an anti-aliasing algorithm of the #-filter anti-aliasing based on sub-pixel continuous edges. It can solve the geometry edges aliasing and the flicker problem in deferred shading. First, the geometry scene with multi-sampling anti-aliasing (MSAA) is rendered to a G-Buffer designed elaborately. Second, the geometry edges are detected on the sub-pixel-level. We mainly take advantage of the Chebyshev inequality to adaptively determine the edges from the probability statistic and the view frustum location. Third, the continuous geometry edges are reconstructed by a #-filter method. Finally, the edge pixels are shaded adaptively. The implementation demonstrates that our algorithm is efficient and scalable for generating high-quality anti-aliasing geometry and reducing shading calculation overhead.


Sign in / Sign up

Export Citation Format

Share Document