scholarly journals Design And Aerodynamic Analysis Of Compliant Mechanism Based Morphing Wings

2021 ◽  
Author(s):  
Stephen D. Sharp

Aircraft today use discrete control surface, typically mounted using pin and sliding joints. These designs can lead to high part-count assemblies and backlash within the assemblies that require lubrication and frequent maintenance. These wing designs also feature fixed dimensions and do not allow for geometry changes mid-flight. These limitations lead to a compromised design that must work relatively well in all situations. This causes inefficiencies in all stages of flight. The Wright brothers, who achieved the first successful powered flight did not use these techniques. Instead they used a system on cables to apply tension and bend the wings to changes their angle of attack. They called this technique wing warping. As aviation advanced it quickly moved from the wing-warping technique towards the discrete element control surfaces. However, there is renewed interest in techniques such as wing warping as the idea of morphing wings becomes more prevalent in aerospace research. Morphing wings would allow for changing major characteristics, such as camber, span, sweep, etc. of the wing mid-flight and allow for continuous optimization through all stages of its mission. The design covered in this thesis was centered around camber morphing of the wing in flight. Biomimicry played a large role in the design, with research into the skeletal systems of birds and fish used to dictate the rib structures. This bio-inspired path led to the use of compliant mechanisms for the ribs. This choice allowed for a low part-count and zero-backlash design that would require no maintenance and have a very long service life due to an extremely low amount of fatigue. Several design iterations were tested with different common desktop 3-D printing materials. The final rib design was made of PETG and whose compliant shape was directly inspired by the skeletal structure of the spine of a fish. The design proved to be extremely reliable and robust. Skin design has long been one of the biggest hurdles of morphing wing design. Most research reviewed in this paper used an elastomer style skin that was pre-stretched to reduce buckling under compression. Through testing it was found that this method is difficult and unreliable to maintain a smooth and continuous surface. Even when pre-stretching, the elastomer would fatigue and buckle under compression. The final design was a PETG panel with a web and flange that would interact with the rib structure and was able to translate chordwise along the rib as the wing altered its camber. The skin had built-in flexures to reduce bending actuation forces. The wing also featured a rigid leading-edge skin panel with which the other skin panels would be able to slide under to maintain skin coverage under both extension and compression of the wing surfaces. This however led to aerodynamic problems that were discovered in the CFD analysis. The wing was prepared for CFD using finite element analysis to produced morphed wing bodies for a 0, 10, 20, and 30-degree trailing edge deflection angles. A model was also produced of the same base airfoil (NACA 0018) with a hinged flap of 30% chord length deflected by the same amount to serve as a performance benchmark for the morphing wing. The main criteria used to evaluate the performance were the lift, drag, and lift-to-drag ratios. For the 0⁰ tests, the morphing wing had up to almost 29% higher drag at high speeds. The results showed that the 10⁰ deflection tests found up to a 115% increase in lift over the hinged flap design and a lift-to-drag ratio of up to 161% higher for the morphing wing. The 20⁰ and 30⁰ tests saw the lift advantage of the morphing wing decrease but on average across all tests, the morphing wing had a lift coefficient higher than the hinged flap by 43%. Additionally, for the large deflection tests the hinged flap had up to a 60.5% advantage in lift-to-drag ratio. The computational fluid dynamic analysis showed that due to the larger effective angle of attack and the step-down in the skin of the morphing wing, at larger deflection angles the flow would separate much earlier along the chord. Therefore, based on the analysis, the morphing wing would create a substantial performance and efficiency gains when wing trailing edge deflection was kept below 20⁰. This meant it would be suitable for stages of flight such as takeoff and climb. Planned future work aims to reduce the 0⁰ drag of the morphing wing as well as the early flow separation at high angles of deflection. It is assumed, that by scaling up the wing, the proportion of the step size will decrease dramatically and as a result would improve the flow characteristics. Additionally, the placement and rotational limits of the flexures can be tested further to optimize the morphed shape to reduce the severity of the adverse pressure gradient along the upper surface when in high deflection states. With continued work on improving the flow separation, this design proves promising for even high-deflection cases. Overall the V4 rib design and the accompanying compliant skin panel design were very successful for their initial tests.

2021 ◽  
Author(s):  
Stephen D. Sharp

Aircraft today use discrete control surface, typically mounted using pin and sliding joints. These designs can lead to high part-count assemblies and backlash within the assemblies that require lubrication and frequent maintenance. These wing designs also feature fixed dimensions and do not allow for geometry changes mid-flight. These limitations lead to a compromised design that must work relatively well in all situations. This causes inefficiencies in all stages of flight. The Wright brothers, who achieved the first successful powered flight did not use these techniques. Instead they used a system on cables to apply tension and bend the wings to changes their angle of attack. They called this technique wing warping. As aviation advanced it quickly moved from the wing-warping technique towards the discrete element control surfaces. However, there is renewed interest in techniques such as wing warping as the idea of morphing wings becomes more prevalent in aerospace research. Morphing wings would allow for changing major characteristics, such as camber, span, sweep, etc. of the wing mid-flight and allow for continuous optimization through all stages of its mission. The design covered in this thesis was centered around camber morphing of the wing in flight. Biomimicry played a large role in the design, with research into the skeletal systems of birds and fish used to dictate the rib structures. This bio-inspired path led to the use of compliant mechanisms for the ribs. This choice allowed for a low part-count and zero-backlash design that would require no maintenance and have a very long service life due to an extremely low amount of fatigue. Several design iterations were tested with different common desktop 3-D printing materials. The final rib design was made of PETG and whose compliant shape was directly inspired by the skeletal structure of the spine of a fish. The design proved to be extremely reliable and robust. Skin design has long been one of the biggest hurdles of morphing wing design. Most research reviewed in this paper used an elastomer style skin that was pre-stretched to reduce buckling under compression. Through testing it was found that this method is difficult and unreliable to maintain a smooth and continuous surface. Even when pre-stretching, the elastomer would fatigue and buckle under compression. The final design was a PETG panel with a web and flange that would interact with the rib structure and was able to translate chordwise along the rib as the wing altered its camber. The skin had built-in flexures to reduce bending actuation forces. The wing also featured a rigid leading-edge skin panel with which the other skin panels would be able to slide under to maintain skin coverage under both extension and compression of the wing surfaces. This however led to aerodynamic problems that were discovered in the CFD analysis. The wing was prepared for CFD using finite element analysis to produced morphed wing bodies for a 0, 10, 20, and 30-degree trailing edge deflection angles. A model was also produced of the same base airfoil (NACA 0018) with a hinged flap of 30% chord length deflected by the same amount to serve as a performance benchmark for the morphing wing. The main criteria used to evaluate the performance were the lift, drag, and lift-to-drag ratios. For the 0⁰ tests, the morphing wing had up to almost 29% higher drag at high speeds. The results showed that the 10⁰ deflection tests found up to a 115% increase in lift over the hinged flap design and a lift-to-drag ratio of up to 161% higher for the morphing wing. The 20⁰ and 30⁰ tests saw the lift advantage of the morphing wing decrease but on average across all tests, the morphing wing had a lift coefficient higher than the hinged flap by 43%. Additionally, for the large deflection tests the hinged flap had up to a 60.5% advantage in lift-to-drag ratio. The computational fluid dynamic analysis showed that due to the larger effective angle of attack and the step-down in the skin of the morphing wing, at larger deflection angles the flow would separate much earlier along the chord. Therefore, based on the analysis, the morphing wing would create a substantial performance and efficiency gains when wing trailing edge deflection was kept below 20⁰. This meant it would be suitable for stages of flight such as takeoff and climb. Planned future work aims to reduce the 0⁰ drag of the morphing wing as well as the early flow separation at high angles of deflection. It is assumed, that by scaling up the wing, the proportion of the step size will decrease dramatically and as a result would improve the flow characteristics. Additionally, the placement and rotational limits of the flexures can be tested further to optimize the morphed shape to reduce the severity of the adverse pressure gradient along the upper surface when in high deflection states. With continued work on improving the flow separation, this design proves promising for even high-deflection cases. Overall the V4 rib design and the accompanying compliant skin panel design were very successful for their initial tests.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaohua Zou ◽  
Mingsheng Ling ◽  
Wenzheng Zhai

With the development of flight technology, the need for stable aerodynamic and vibration performance of the aircraft in the civil and military fields has gradually increased. In this case, the requirements for aerodynamic and vibration characteristics of the aircraft have also been strengthened. The existing four-rotor aircraft carries limited airborne equipment and payload, while the current eight-rotor aircraft adopts a plane layout. The size of the propeller is generally fixed, including the load capacity. The upper and lower tower layout analyzed in this paper can effectively solve the problems of insufficient four-axis load and unstable aerodynamic and vibration performance of the existing eight-axis aircraft. This paper takes the miniature octorotor as the research object and studies the aerodynamic characteristics of the miniature octorotor at different low Reynolds numbers, different air pressures and thicknesses, and the lift coefficient and lift-to-drag ratio, as well as the vibration under different elastic moduli and air pressure characteristics. The research algorithm adopted in this paper is the numerical method of fluid-solid cohesion and the control equation of flow field analysis. The research results show that, with the increase in the Reynolds number within a certain range, the aerodynamic characteristics of the miniature octorotor gradually become better. When the elastic modulus is 2.5 E, the aircraft’s specific performance is that the lift increases, the critical angle of attack increases, the drag decreases, the lift-to-drag ratio increases significantly, and the angle of attack decreases. However, the transition position of the flow around the airfoil surface is getting closer to the leading edge, and its state is more likely to transition from laminar flow to turbulent flow. When the unidirectional carbon fiber-reinforced thickness is 0.2 mm and the thin arc-shaped airfoil with the convex structure has a uniform thickness of 2.5% and a uniform curvature of 4.5%, the aerodynamic and vibration characteristics of the octorotor aircraft are most beneficial to flight.


2019 ◽  
Vol 131 ◽  
pp. 01120
Author(s):  
Lei Wang ◽  
Lu Min Wang ◽  
Yong Li Liu ◽  
Wen Wen Yu ◽  
Guang Rui Qi ◽  
...  

The effect of board bending degree on hydrodynamic performances of a single-layer cambered otter-board was investigated using engineering models in a wind tunnel. Three different bending degree boards were evaluated at a wind speed of 28 m/s. Parameters measured included: drag coefficient Cx, lift coefficient Cy, pitch moment coefficient Cm, center of pressure coefficient Cp , over a range of angle of attack (0° to 70°). These coefficients were used in analyzing the differences in the performance among the three otter-board models. Results showed that the bending of the board(No. 2, No. 3) increased the water resistance of the otter-board, and improved the lift coefficient of the otter-board in the small angle of attack (0°<α≤20 °) ; the maximum lift coefficients Cy of otter-board model (No. 1) was higher (1.680, α = 25°). the maximum lift–drag ratios of models (No. 1, No. 2 and No. 3) are 6.822 (α = 7.5 °), 6.533 (α = 2.5 °) and 6.384 (α = 5.0°), which showed that the board bending reduces the lift-to-drag ratio of the otter-board.The stability of the No. 3 model was better than those two models (No. 1, No. 2) in most range of attack angle, but No. 1 otter-board model had a better stability in roll of otter-board. The findings of this study can offer useful reference data for the structural optimization of otter-boards for trawling.


2018 ◽  
Vol 91 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Jinwu Xiang ◽  
Kai Liu ◽  
Daochun Li ◽  
Chunxiao Cheng ◽  
Enlai Sha

Purpose The purpose of this paper is to investigate the unsteady aerodynamic characteristics in the deflection process of a morphing wing with flexible trailing edge, which is based on time-accurate solutions. The dynamic effect of deflection process on the aerodynamics of morphing wing was studied. Design/methodology/approach The computational fluid dynamic method and dynamic mesh combined with user-defined functions were used to simulate the continuous morphing of the flexible trailing edge. The steady aerodynamic characteristics of the morphing deflection and the conventional deflection were studied first. Then, the unsteady aerodynamic characteristics of the morphing wing were investigated as the trailing edge deflects at different rates. Findings The numerical results show that the transient lift coefficient in the deflection process is higher than that of the static case one in large angle of attack. The larger the deflection frequency is, the higher the transient lift coefficient will become. However, the situations are contrary in a small angle of attack. The periodic morphing of the trailing edge with small amplitude and high frequency can increase the lift coefficient after the stall angle. Practical implications The investigation can afford accurate aerodynamic information for the design of aircraft with the morphing wing technology, which has significant advantages in aerodynamic efficiency and control performance. Originality/value The dynamic effects of the deflection process of the morphing trailing edge on aerodynamics were studied. Furthermore, time-accurate solutions can fully explore the unsteady aerodynamics and pressure distribution of the morphing wing.


2008 ◽  
Vol 58 ◽  
pp. 41-46 ◽  
Author(s):  
Emily Leylek ◽  
Justin Manzo ◽  
Ephrahim Garcia

A bat-like aircraft is proposed, using a smart joint mechanism to actuate the morphing of the wings. The smart joint stays in its deformed shape after cooling, which can be up to 5% of 25 mm length joint. The morphing of the wing shapes of three different bat species is evaluated using a planar lifting line analysis. The morphing improves the lift coefficient over 1000% and the lift to drag ratio over 300% at an angle of attack of 0.6°. The results compare well with what is expected from the type of flight and morphology that has been documented for the bats.


2019 ◽  
Author(s):  
Yong Peng ◽  
Jun Wang ◽  
Wei Wang ◽  
Guoqing Yin

Abstract. In this paper, the class-shape function transform (CST) parametric method is used to parameterize the airfoil configuration, and a new airfoil is randomly generated within a limited range. The 2D Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) solver is used to compute the quantities such as lift-to-drag ratio. The multi-objective genetic algorithm performs multi-objective optimization design on the airfoil plane shape to achieve high lift-to-drag ratio with low drag in operating ranges of angle of attack, and finally obtains the Pareto optimal solution set. The mixed function of index method is used to increase the thickness of the trailing edge of the airfoil. From the multi-objective solutions and blunt trailing edge solutions which represent the best trade-offs between the design objectives, one can select a set of airfoil shapes with a low relative drag force and with improved aerodynamic performance. Taking a typical airfoil NACA4418 as an example. The results show that the optimized airfoil has a better pressure distribution than the original airfoil, effectively increasing the lift coefficient and reducing the drag coefficient. After thickening the trailing edge of the optimized airfoil, the results show that the lift coefficient is improved at all angles of attack and the stall is delayed. And the blunt trailing edge airfoil has better lift-to-drag characteristics than the original airfoil and the optimized airfoil.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012066
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract The NACA4415 airfoil was numerically simulated with the help of the Fluent software to analyze its aerodynamic characteristics. Results are acquired as follows: The calculation accuracy of Fluent software is much higher than that of XFOIL software; the calculation result of SST k-ω(sstkw) turbulence model is closest to the experimental value; within a certain range, the larger the Reynolds number is, the larger the lift coefficient and lift-to-drag ratio of the airfoil will be, and the smaller the drag coefficient will be; when the angle of attack is less than the optimal angle of attack, the Reynolds number has less influence on the lift-to-drag coefficient and the lift-to-drag ratio; as the Reynolds number increases, the optimal angle of attack increases slightly, and the applicable angle of attack range for high lift-to-drag ratios becomes smaller.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012078
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract The aerodynamic characteristics of NACA4412 airfoil with different pitching motion elements were compared and analyzed based on CFD in this research. The results are acquired as follows: the difference between the lift and drag coefficients of the airfoil during pitch up and pitch down motions becomes larger with the increase of the pitching amplitude or initial angle of attack; as the pitching amplitude increases, the lift coefficient grows slightly greater and the drag coefficient grows much greater; as the initial angle of attack increases, the lift coefficient grows much greater and the drag coefficient grows slightly; the smaller the attenuation frequency is, the larger the lift-to-drag ratio of the airfoil will be.


2018 ◽  
Vol 10 (1) ◽  
pp. 61
Author(s):  
Henny Pratiwi

This research aims to investigate the effects of angle of attack, Reynold numbers and winglet structure on the performance of Cessna 172 Skyhawk aircraft with winglets variation design. Winglets improve efficiency by diffusing the shed wingtip vortex, which reducing the drag due to lift and improving the wing’s lift over drag ratio. In this research, the specimens are the duplicated of Cesnna 172 Skyhawk wing with 1:40 ratio made of balsa wood. There are three different winglet designs that are compared with the one without winglet. The experiments are conducted in an open wind tunnel to measure the lift and drag force with Reynold numbers of 25,000 and 33,000. It can be concluded that the wings with winglets have higher lift coefficient than wing without winglet for both Reynold numbers. It was also found that all wings with winglets have higher lift-to-drag ratio than wings without winglet where the blended 45o cant angle has the highest value.


Author(s):  
Mohammed Rafiuddin Ahmed ◽  
Krishnil R. Ram ◽  
Bum-Suk Kim ◽  
Sunil P. Lal

The root region of small wind turbines experience low Reynolds number (Re) flow that makes it difficult to design airfoils that provide good aerodynamic performance and at the same time, provide structural strength. In the present work, a multi-objective genetic algorithm code was used to design airfoils that are suitable for the root region of small wind turbines. A composite Bezier curve with two Bezier segments and 16 control points (11 of them controlled) was used to parametrize the airfoil problem. Geometric constraints including suitable curvature conditions were enforced to maintain the airfoil thickness between 18% and 22% of chord and a trailing edge thickness of 3% of chord. The objectives were to maximize the lift-to-drag ratio for both clean and soiled conditions. Optimization was done by coupling the flow solver to a genetic algorithm code written in C++, at Re = 200,000 and for angles of attack of 4 and 10 degrees, as the algorithm was found to give smooth variation of lift-to-drag ratio within such a range. The best airfoil from the results was tested in the wind tunnel as well as using ANSYS-CFX. The experimental airfoil had a chord length of 75 mm and was provided with 33 pressure taps. Testing was done for both free and forced transition cases. The airfoil gave the highest lift-to-drag ratio at an angle of 6 degrees with the ratio varying very little between 4 degrees and 8 degrees. Forced transition at 8% of chord did not show significant change in the performance indicating that the airfoil will perform well even in soiled condition. Fixed trailing edge flaps (Gurney flaps) were provided right at the trailing edge on the lower surface. The lift and drag behavior of the airfoil was then studied with Gurney Flaps of 2% and 3% heights, as it was found from previous studies that flap heights of 1% or greater than 3% do not give optimum results. The flaps considerably improved the suction on the upper surface and also improved the pressure on the lower surface, resulting in a higher lift coefficient; at the same time, there was also an increase in the drag coefficient but it was less compared to the increase in the lift coefficient. The results indicate that Gurney flaps can be effectively used to improve the performance of thick trailing edge airfoils designed for the root region of small wind turbines.


Sign in / Sign up

Export Citation Format

Share Document