scholarly journals Conceptual Design of an Attachment Based Reconfigurable Machine Tool Using Design Structure Matrix

2021 ◽  
Author(s):  
Ambrish Gupta

There has been very little research in the field of Reconfigurable machine Tools (RMTs). None of the past research developed a method to design a set of RMT configurations required to machine a part-family. This thesis presents a novel method to determine the functional specifications of the RMT configurations required to machine a part-family. The method is developed by firstly designing the RMT required to machine a single part. Thereafter, this method is extrapolated to suit the problem of a part-family. To design the RMTs for a single part, firstly, the part is decomposed into manufacturing features. Next, a novel method is developed to cluster the features. Each of these feature-clusters corresponds to a single RMT configuration. Based on the machining requirements of these RMT configurations, the modules are designed. These modules are assembled to form the final RMTs. The method is demonstrated by applying it to an example part.

2021 ◽  
Author(s):  
Ambrish Gupta

There has been very little research in the field of Reconfigurable machine Tools (RMTs). None of the past research developed a method to design a set of RMT configurations required to machine a part-family. This thesis presents a novel method to determine the functional specifications of the RMT configurations required to machine a part-family. The method is developed by firstly designing the RMT required to machine a single part. Thereafter, this method is extrapolated to suit the problem of a part-family. To design the RMTs for a single part, firstly, the part is decomposed into manufacturing features. Next, a novel method is developed to cluster the features. Each of these feature-clusters corresponds to a single RMT configuration. Based on the machining requirements of these RMT configurations, the modules are designed. These modules are assembled to form the final RMTs. The method is demonstrated by applying it to an example part.


2019 ◽  
Vol 11 (20) ◽  
pp. 5710
Author(s):  
Guofeng Ma ◽  
Shan Jiang ◽  
Tiancheng Zhu ◽  
Jianyao Jia

Construction projects have faced serious schedule delays caused by rework risks. However, it appears that traditional methods are of limited value in developing applicable project schedules. This study presents an analysis on construction projects schedule development under rework scenarios by a novel method named the improved critical chain design structure matrix (CCDSM). Research data are collected from a real estate development project in China. As a result, predictions of project completion duration and probability have been made. A reliable schedule considering information interactions has been developed and visualized. Rework impact areas of activities have been examined to quantitatively record the impact on project duration. To meet different demands, the method generates two more schedules setting different rework buffers. Furthermore, these activities have the potential of causing rework and have been quantified based on the calculation of two criticalities, providing an identification of rework-intensive works that should be payed close importance to, which have not be realized by previous methods. The results proved the feasibility and effectiveness of this method in developing a schedule for construction projects disturbed by rework, helping practitioners adopt measures to avoid rework-caused schedule delays and achieve sustainable development of such projects.


2021 ◽  
Author(s):  
Zhengyi Xu ◽  
Fengfeng (Jeff) Xi ◽  
Lilan Liu ◽  
Li Chen

Presented in this paper is a method for the design of modular reconfigurable machine tools (MRMTs). An MRMT is capable of using a minimal number of modules through reconfiguration to perform the required machining tasks for a family of parts. The proposed method consists of three steps: module identification, module determination, and layout synthesis. In the first step, the module components are collected from a family of general-purpose machines to establish a module library. In the second step, for a given family of parts to be machined, a set of needed modules are selected from the module library to construct a desired reconfigurable machine tool. In the third step, a final machine layout is decided though evaluation by considering a number of performance indices. Based on this method, a software package has been developed that can design an MRMT for a given part family.


2015 ◽  
Vol 760 ◽  
pp. 39-44 ◽  
Author(s):  
Toufik Boudouh ◽  
Olivier Grunder

This Design Structure Matrix is a method and a tool used to capture, analyze and optimize iterations in the design process. It has been widely used over the past two decades by researchers from both academia and industry. DSM is well suited to identify iterations in the design process. Many heuristics were developed to deal with DSM in order to reduce the number of iterations by rescheduling the tasks of the design process. These heuristics are based on a process called partitioning. These heuristics give generally an approached solution but not the optimal one. In this paper we introduce a new algorithm in order to get the exact solution of the partitioning process using linear programming.


2021 ◽  
Author(s):  
Zhengyi Xu ◽  
Fengfeng (Jeff) Xi ◽  
Lilan Liu ◽  
Li Chen

Presented in this paper is a method for the design of modular reconfigurable machine tools (MRMTs). An MRMT is capable of using a minimal number of modules through reconfiguration to perform the required machining tasks for a family of parts. The proposed method consists of three steps: module identification, module determination, and layout synthesis. In the first step, the module components are collected from a family of general-purpose machines to establish a module library. In the second step, for a given family of parts to be machined, a set of needed modules are selected from the module library to construct a desired reconfigurable machine tool. In the third step, a final machine layout is decided though evaluation by considering a number of performance indices. Based on this method, a software package has been developed that can design an MRMT for a given part family.


2021 ◽  
Author(s):  
Zhengyi Xu ◽  
Fengfeng (Jeff) Xi ◽  
Lilan Liu ◽  
Li Chen

Presented in this paper is a method for the design of modular reconfigurable machine tools (MRMTs). An MRMT is capable of using a minimal number of modules through reconfiguration to perform the required machining tasks for a family of parts. The proposed method consists of three steps: module identification, module determination, and layout synthesis. In the first step, the module components are collected from a family of general-purpose machines to establish a module library. In the second step, for a given family of parts to be machined, a set of needed modules are selected from the module library to construct a desired reconfigurable machine tool. In the third step, a final machine layout is decided though evaluation by considering a number of performance indices. Based on this method, a software package has been developed that can design an MRMT for a given part family.


Author(s):  
Dana Ganor-Stern

Past research has shown that numbers are associated with order in time such that performance in a numerical comparison task is enhanced when number pairs appear in ascending order, when the larger number follows the smaller one. This was found in the past for the integers 1–9 ( Ben-Meir, Ganor-Stern, & Tzelgov, 2013 ; Müller & Schwarz, 2008 ). In the present study we explored whether the advantage for processing numbers in ascending order exists also for fractions and negative numbers. The results demonstrate this advantage for fraction pairs and for integer-fraction pairs. However, the opposite advantage for descending order was found for negative numbers and for positive-negative number pairs. These findings are interpreted in the context of embodied cognition approaches and current theories on the mental representation of fractions and negative numbers.


2020 ◽  
Vol 13 (1) ◽  
pp. 315
Author(s):  
Malte Schäfer ◽  
Manuel Löwer

With the intent of summing up the past research on ecodesign and making it more accessible, we gather findings from 106 existing review articles in this field. Five research questions on terminology, evolution, barriers and success factors, methods and tools, and synergies, guide the clustering of the resulting 608 statements extracted from the reference. The quantitative analysis reveals that the number of review articles has been increasing over time. Furthermore, most statements originate from Europe, are published in journals, and address barriers and success factors. For the qualitative analysis, the findings are grouped according to the research question they address. We find that several names for similar concepts exist, with ecodesign being the most popular one. It has evolved from “end-of-pipe” pollution prevention to a more systemic concept, and addresses the complete life cycle. Barriers and success factors extend beyond the product development team to management, customers, policymakers, and educators. The number of ecodesign methods and tools available to address them is large, and more reviewing, testing, validation, and categorization of the existing ones is necessary. Synergies between ecodesign and other research disciplines exist in theory, but require implementation and testing in practice.


Sign in / Sign up

Export Citation Format

Share Document