scholarly journals Optimal Control of Non-Isothermal, Batch Polymerization of Methacrylates with Specified Time, Monomer Conversion, and Average Molecular Weights

2021 ◽  
Author(s):  
Baranitharan Sanmuga Sundaram

Optimal control policies are determined for the free radical polymerization of three different polymerization processes, in a non-isothermal batch reactor as follows: (1) bulk polymerization of n-butyl methacrylate; (2) solution polymerization of methyl methacrylate with monofunctional initiator; (3) solution polymerization of methyl methacrylate with bifunctional initiator. Four different optimal control objectives are realized for the above three processes. The objectives are: (i) maximization of monomer conversion in a specified operation time, (ii) minimization of operation time for a specified, final monomer conversation, (iii) maximization of monomer conversion for a specified, final number average polymer molecular weight, and (iv) maximization of monomer conversion for a specified, final weight average polymer molecular weight. The realization of these objectives is expected to be very useful for the batch production of polymers. To realize the above four different optimal control objectives, a genetic algorithms-based optimal control method is applied, and the temperature of heat exchange fluid inside reactor jacket is used as a control function. Necessary equations are provided in the above three processes to suitably transform the process model in the range of a specified variable other than time, and to evaluate the elements of Jacobian to help in the accurate solution of the process model. The results of this optimal control application reveal considerable improvements in the performance of the batch polymerization processes.

2021 ◽  
Author(s):  
Baranitharan Sanmuga Sundaram

Optimal control policies are determined for the free radical polymerization of three different polymerization processes, in a non-isothermal batch reactor as follows: (1) bulk polymerization of n-butyl methacrylate; (2) solution polymerization of methyl methacrylate with monofunctional initiator; (3) solution polymerization of methyl methacrylate with bifunctional initiator. Four different optimal control objectives are realized for the above three processes. The objectives are: (i) maximization of monomer conversion in a specified operation time, (ii) minimization of operation time for a specified, final monomer conversation, (iii) maximization of monomer conversion for a specified, final number average polymer molecular weight, and (iv) maximization of monomer conversion for a specified, final weight average polymer molecular weight. The realization of these objectives is expected to be very useful for the batch production of polymers. To realize the above four different optimal control objectives, a genetic algorithms-based optimal control method is applied, and the temperature of heat exchange fluid inside reactor jacket is used as a control function. Necessary equations are provided in the above three processes to suitably transform the process model in the range of a specified variable other than time, and to evaluate the elements of Jacobian to help in the accurate solution of the process model. The results of this optimal control application reveal considerable improvements in the performance of the batch polymerization processes.


2003 ◽  
Vol 774 ◽  
Author(s):  
Lucy Vojtova ◽  
Nicholas J. Turro ◽  
Jeffrey T. Koberstein

AbstractSynthesis of α,ω-allyl-terminated telechelic macromonomers based on poly(tert-butyl methacrylate) (poly(t-BMA)) and poly(methacrylic acid) (poly(MAA)) was studied with the aim of preparing end-linked gels and hydrogels. Low molecular weight α-allyl-terminated poly(t-BMA) macromonomers with narrow polydispersities (Mw/Mn = 1.16) were synthesized via controlled atom transfer radical polymerization (ATRP) using a Cu(I)Br/N,N,N',N',N',N'-hexamethyltriethylenetetraamine catalyst system in conjunction with an allyl-2-bromoisobutyrate as the functional initiator. The polymerizations exhibited a linear increase of molecular weight in direct proportion to the monomer conversion and first-order kinetics with respect to monomer concentration. No significant difference was found between using polar or non-polar solvents (tetrahydrofuran or benzene, respectively). Optimization of reaction conditions to obtain the highest degree of active terminal bromine is discussed. Quenching the ATRP reaction with allyltributyltin yielded α,ω-allyl-terminated poly(t-BMA) macromonomers by replacing the terminal bromine with ω-allyl functional group. Poly(MAA) macromonomers were prepared by deprotection of the tert-butyl group from α,ω-allyl-terminated poly(t-BMA) macromonomers using concentrated trifluoroacetic acid at room temperature. Successful synthetic steps were confirmed by 1H NMR, FT-IR and MALDI-TOF MS analyses. The α,ω-allyl-terminated macromonomers were proven to be candidates for further polymerization by forming end-linked, non-soluble gels.


2016 ◽  
Vol 7 (45) ◽  
pp. 6964-6972 ◽  
Author(s):  
N. Ballard ◽  
A. Simula ◽  
M. Aguirre ◽  
J. R. Leiza ◽  
S. van Es ◽  
...  

The limits of control of the molecular weight and polymer structure in the semi-batch solution polymerization of methyl methacrylate by NMP are explored.


2006 ◽  
Vol 100 (11) ◽  
pp. 114323 ◽  
Author(s):  
Giannis Bounos ◽  
Alexandros Selimis ◽  
Savas Georgiou ◽  
Esther Rebollar ◽  
Marta Castillejo ◽  
...  

2016 ◽  
Vol 11 (3) ◽  
pp. 185-196
Author(s):  
Woon Phui Law ◽  
Wan Hanisah Wan Ibrahim ◽  
Jolius Gimbun

Abstract This paper presents a modeling of methyl methacrylate (MMA) polymerization with toluene in the presence of azo-bi’s-isobutyronitrile (AIBN) using MATLAB. This work aims to optimize the initial concentration of initiator and the reactor temperature to achieve a maximum monomer conversion in minimum batch time. The optimization of solution polymerization of MMA based on the three-stage polymerization model (TSPM) was performed using ode23t solver. The non-linear polymerization kinetics considered the gel, glass and cage effect to obtain a realistic prediction. The predicted reactor and jacket temperature showed a reasonable agreement with the experimental data, where the error is about 2.7 % and 2.3 %, respectively. The results showed that a maximum monomer conversion of 94 % was achieved at 0.126 kgmol m–3 of the initial concentration of AIBN and 346 K of the initial reactor temperature in 8,951 s (2.5 h).


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 323-329 ◽  
Author(s):  
XianRong Shen ◽  
DengZhou Xia ◽  
YiXin Xiang ◽  
JianGang Gao

AbstractIn this paper, γ-valerolactone (GVL), a bio-based polar solvent, was applied as green solvent for iron(III)-catalyzed AGET ATRP without any external ligand. GVL is a fully degradable, non-toxic green solvent and has complex ability to iron halide complexes through –OCO- group. GVL as the solvent and the ligand for AGET ATRP of MMA in a controlled manner, as proved by kinetic study, the low PDI values and the increase in polymer molecular weight versus monomer conversion. Chain re-initiation experiments and 1HNMR characterization were conducted to further confirm the living feature.


2021 ◽  
Vol 3 (1) ◽  
pp. 195-202
Author(s):  
Eri Yoshida ◽  

Giant polymer vesicles consisting of amphiphilic diblock copolymers are helpful as artificial biomembrane models based on many similarities in their size, structure, morphological transformation, membrane permeability, etc. This paper describes the creation of neuron-like tubule extension employing the polymer vesicles. The polymerization-induced self-assembly was performed in the presence of micron-sized spherical vesicles consisting of poly(methacrylic acid)-block-poly(methyl methacrylate-random-methacrylic acid), PMAA-b-P(MMA-r-MAA), through the photo nitroxide-mediated controlled/living radical polymerization (photo-NMP) using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator. The photo-NMP of methyl methacrylate (MMA) and methacrylic acid (MAA) was carried out in an aqueous methanol solution (CH3OH/H2O = 3/1 v/v) using poly(methacrylic acid) (PMAA) end-capped with MTEMPO and the spherical vesicles of PMAA141-b-P(MMA0.831-r-MAA0.169)368 with an 11.7-mm diameter. The vesicles projected many processes on their surface during the early stage of the polymerization. As the polymerization progressed, only one or two of the processes extended to thick tubules, accompanied by the slow growth of thin tubules. Further progress of the polymerization elongated the thick tubules and caused branching of the tubules. The tubules had a vesicular structure because cup-like vesicles joined in line were formed during the initial stage of the extension. The polymerization livingness supported the tubule extension based on a linear increase in the molecular weight of the component copolymer and a negligible change in the molecular weight distribution versus the monomer conversion. The spherical vesicles were similar to the neurons in the tubule extension for the initial projection, followed by the elongation and branching. This similarity implies that the neurite extension in the neurons is related to the inherent property of the bilayer membrane.


2005 ◽  
Vol 248 (1-4) ◽  
pp. 254-258 ◽  
Author(s):  
E. Rebollar ◽  
G. Bounos ◽  
M. Oujja ◽  
C. Domingo ◽  
S. Georgiou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document