scholarly journals A discriminative analysis framework for multi-modal information fusion

Author(s):  
Lei Gao

Since multi-modal data contain rich information about the semantics presented in the sensory and media data, valid interpretation and integration of multi-modal information is recognized as a central issue for the successful utilization of multimedia in a wide range of applications. Thus, multi-modal information analysis is becoming an increasingly important research topic in the multimedia community. However, the effective integration of multi-modal information is a difficult problem, facing major challenges in the identification and extraction of complementary and discriminatory features, and the impactful fusion of information from multiple channels. In order to address the challenges, in this thesis, we propose a discriminative analysis framework (DAF) for high performance multi-modal information fusion. The proposed framework has two realizations. We first introduce Discriminative Multiple Canonical Correlation Analysis (DMCCA) as the fusion component of the framework. DMCCA is capable of extracting more discriminative characteristics from multi-modal information. We demonstrate that optimal performance by DMCCA can be analytically and graphically verified, and Canonical Correlation Analysis (CCA), Multiple Canonical Correlation Analysis (MCCA) and Discriminative Canonical Correlation Analysis (DCCA) are special cases of DMCCA, thus establishing a unified framework for canonical correlation analysis. To further enhance the performance of discriminative analysis in multi-modal information fusion, Kernel Entropy Component Analysis (KECA) is brought in to analyze the projected vectors in DMCCA space, and thus forming the second realization of the framework. By doing so, not only the discriminative relation is considered in DMCCA space, but also the inherent complementary representation of the input data is revealed by entropy estimation, leading to better utilization of the multi-modal information and better pattern recognition performance. Finally, we implement a prototype of the proposed DAF to demonstrate its performance in handwritten digit recognition, face recognition and human emotion recognition. Extensive experiments show that the proposed framework outperforms the existing methods based on similar principles, clearly demonstrating the generic nature of the framework. Furthermore, this work offers a promising direction to design advanced multi-modal information fusion systems with great potential to impact the development of intelligent human computer interaction systems.

2021 ◽  
Author(s):  
Lei Gao

Since multi-modal data contain rich information about the semantics presented in the sensory and media data, valid interpretation and integration of multi-modal information is recognized as a central issue for the successful utilization of multimedia in a wide range of applications. Thus, multi-modal information analysis is becoming an increasingly important research topic in the multimedia community. However, the effective integration of multi-modal information is a difficult problem, facing major challenges in the identification and extraction of complementary and discriminatory features, and the impactful fusion of information from multiple channels. In order to address the challenges, in this thesis, we propose a discriminative analysis framework (DAF) for high performance multi-modal information fusion. The proposed framework has two realizations. We first introduce Discriminative Multiple Canonical Correlation Analysis (DMCCA) as the fusion component of the framework. DMCCA is capable of extracting more discriminative characteristics from multi-modal information. We demonstrate that optimal performance by DMCCA can be analytically and graphically verified, and Canonical Correlation Analysis (CCA), Multiple Canonical Correlation Analysis (MCCA) and Discriminative Canonical Correlation Analysis (DCCA) are special cases of DMCCA, thus establishing a unified framework for canonical correlation analysis. To further enhance the performance of discriminative analysis in multi-modal information fusion, Kernel Entropy Component Analysis (KECA) is brought in to analyze the projected vectors in DMCCA space, and thus forming the second realization of the framework. By doing so, not only the discriminative relation is considered in DMCCA space, but also the inherent complementary representation of the input data is revealed by entropy estimation, leading to better utilization of the multi-modal information and better pattern recognition performance. Finally, we implement a prototype of the proposed DAF to demonstrate its performance in handwritten digit recognition, face recognition and human emotion recognition. Extensive experiments show that the proposed framework outperforms the existing methods based on similar principles, clearly demonstrating the generic nature of the framework. Furthermore, this work offers a promising direction to design advanced multi-modal information fusion systems with great potential to impact the development of intelligent human computer interaction systems.


Author(s):  
Michael G. Shafto ◽  
Asaf Degani ◽  
Alex Kirlik

Canonical correlation analysis is a type of multivariate linear statistical analysis, first described by Hotelling (1935), which is used in a wide range of disciplines to analyze the relationships between multiple independent and multiple dependent variables. We argue that canonical correlation analysis is the method of choice for use with many kinds of datasets encountered in human factors research, including field-study data, part-task and full-mission simulation data, and flight-recorder data. Although canonical correlation analysis is documented in standard textbooks and is available in many statistical computing packages, there are some technical and interpretive problems which prevent its routine use by human factors practitioners. These include problems of computation, interpretation, statistical significance, and treatment of discrete variables. In this paper we discuss these problems and suggest solutions to them. We illustrate the problems and their solutions based on our experience in using canonical correlation in the analysis of a field study of crew-automation interaction in commercial aviation.


Biostatistics ◽  
2020 ◽  
Author(s):  
Arnaud Gloaguen ◽  
Cathy Philippe ◽  
Vincent Frouin ◽  
Giulia Gennari ◽  
Ghislaine Dehaene-Lambertz ◽  
...  

Summary Regularized generalized canonical correlation analysis (RGCCA) is a general multiblock data analysis framework that encompasses several important multivariate analysis methods such as principal component analysis, partial least squares regression, and several versions of generalized canonical correlation analysis. In this article, we extend RGCCA to the case where at least one block has a tensor structure. This method is called multiway generalized canonical correlation analysis (MGCCA). Convergence properties of the MGCCA algorithm are studied, and computation of higher-level components are discussed. The usefulness of MGCCA is shown on simulation and on the analysis of a cognitive study in human infants using electroencephalography (EEG).


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Dietmar Cordes ◽  
Mingwu Jin ◽  
Tim Curran ◽  
Rajesh Nandy

A wide range of studies show the capacity of multivariate statistical methods for fMRI to improve mapping of brain activations in a noisy environment. An advanced method uses local canonical correlation analysis (CCA) to encompass a group of neighboring voxels instead of looking at the single voxel time course. The value of a suitable test statistic is used as a measure of activation. It is customary to assign the value to the center voxel; however, this is a choice of convenience and without constraints introduces artifacts, especially in regions of strong localized activation. To compensate for these deficiencies, different spatial constraints in CCA have been introduced to enforce dominance of the center voxel. However, even if the dominance condition for the center voxel is satisfied, constrained CCA can still lead to a smoothing artifact, often called the “bleeding artifact of CCA”, in fMRI activation patterns. In this paper a new method is introduced to measure and correct for the smoothing artifact for constrained CCA methods. It is shown that constrained CCA methods corrected for the smoothing artifact lead to more plausible activation patterns in fMRI as shown using data from a motor task and a memory task.


Sign in / Sign up

Export Citation Format

Share Document