scholarly journals Structural behaviour of ultra high performance fibre reinforced concrete composite members

2021 ◽  
Author(s):  
Luaay Hussein

The aging and deterioration of reinforced concrete infrastructures in North America present major technical and economical challenges to infrastructure owners. To effectively address some of the challenges, there is a need to develop innovative and cost-effective systems. The main objective of this research was to develop composite members of ultra-high performance fibre reinforced concrete and normal strength concrete or high strength concrete (UHPFRC-NSC/HSC). In order to achieve this objective, the first phase of this research investigates the structural behaviour of UHPFRC with varying fibre content beams without web reinforcement. Test results indicated that the addition of 1% of steel fibres effectively improves the shear strength of UHPC beams by 77% due to the crack-bridging stress that develops across the crack surface. In the second phase, experimental studies were carried out on UHPFRC-NSC/HSC prisms and beams without stirrups to investigate the flexural and shear capacity of those composite members. Each beam specimen was designed to have the UHPFRC layer in tension and the NSC/HSC layer in compression. Additional varied parameters included fibre volume content, and shear connectors were investigated. Test results showed that the performance of the proposed composite system in terms of the flexural and shear capacity was successfully enhanced. All composite beams failed in shear at a force that is 1.6 to 2.0 times higher than that of the NSC/HSC beam's resistance. Test results showed that the effect of using HSC versus NSC in the composite beam was negligible, and the bond strength between the two concrete material layers (UHPFRC and NSC/HSC) was significantly high that the addition of shear connectors was unnecessary. In the third phase, an analytical and finite element models to predict the ultimate shear capacity of UHPFRC composite beams were proposed and validated with the experimental results. The results of the finite element analysis showed that the size effect in structures made of UHPFRC material has little influence on the shear capacity. Finally a comparison between the finite element model and the analytical model indicated that both models developed in this research are capable of predicting the shear behaviour of UHPFRC and UHPFRC-NSC/HSC beams.

2021 ◽  
Author(s):  
Luaay Hussein

The aging and deterioration of reinforced concrete infrastructures in North America present major technical and economical challenges to infrastructure owners. To effectively address some of the challenges, there is a need to develop innovative and cost-effective systems. The main objective of this research was to develop composite members of ultra-high performance fibre reinforced concrete and normal strength concrete or high strength concrete (UHPFRC-NSC/HSC). In order to achieve this objective, the first phase of this research investigates the structural behaviour of UHPFRC with varying fibre content beams without web reinforcement. Test results indicated that the addition of 1% of steel fibres effectively improves the shear strength of UHPC beams by 77% due to the crack-bridging stress that develops across the crack surface. In the second phase, experimental studies were carried out on UHPFRC-NSC/HSC prisms and beams without stirrups to investigate the flexural and shear capacity of those composite members. Each beam specimen was designed to have the UHPFRC layer in tension and the NSC/HSC layer in compression. Additional varied parameters included fibre volume content, and shear connectors were investigated. Test results showed that the performance of the proposed composite system in terms of the flexural and shear capacity was successfully enhanced. All composite beams failed in shear at a force that is 1.6 to 2.0 times higher than that of the NSC/HSC beam's resistance. Test results showed that the effect of using HSC versus NSC in the composite beam was negligible, and the bond strength between the two concrete material layers (UHPFRC and NSC/HSC) was significantly high that the addition of shear connectors was unnecessary. In the third phase, an analytical and finite element models to predict the ultimate shear capacity of UHPFRC composite beams were proposed and validated with the experimental results. The results of the finite element analysis showed that the size effect in structures made of UHPFRC material has little influence on the shear capacity. Finally a comparison between the finite element model and the analytical model indicated that both models developed in this research are capable of predicting the shear behaviour of UHPFRC and UHPFRC-NSC/HSC beams.


2020 ◽  
Vol 11 (4) ◽  
pp. 494-514
Author(s):  
Mohtady Sherif ◽  
Hesham Othman ◽  
Hesham Marzouk ◽  
Hassan Aoude

Ultra-high-performance fibre-reinforced concrete is the latest generation of structural concrete, having outstanding fresh and hardened properties; this includes the ease of placement and consolidation with ultra-high mechanical properties, as well as toughness, volume stability, durability, higher flexural and tensile strength, and ductility. As more research is being focused on it, the material behaviour and characteristics are getting more understood, and the research demand for the special applications of the ultra-high-performance fibre-reinforced concrete is growing higher. One special application that ultra-high-performance fibre-reinforced concrete is thought to have an outstanding performance at is in the field of protective structures, specifically against blast loads. This article presents part of a study that is concerned with the behaviour and response of ultra-high-performance fibre-reinforced concrete wall panels under blast load. Size and shape optimization techniques were combined in this study to optimize the design of a 200-MPa ultra-high-performance fibre-reinforced concrete under blast loads using finite element modelling. This design optimization aims to maximize stiffness and minimize the cost while satisfying both design stresses and construction requirements. The design variable to be optimized for are the thickness ranging from 100 to 300 mm at 25 mm increments, in addition to the reinforcement ratio of 0%, 0.2%, 1% and 3%, and aspect ratio of 1, 1.5 and 2; the boundary condition is four edges fixed and restrained. The numerical simulation has been performed using an explicate finite element software package. The complete behaviour of an ultra-high-performance fibre-reinforced concrete is defined using the concrete damaged plasticity model. The concrete constitutive model has been developed considering the contribution of tensile hardening response, fracture energy and crack-band width approaches to accurately represent the tensile behaviour and guarantee mesh independence of results. The blast load is applied using the Conventional Weapons method of the US Army Corps of Engineers that is readily available in the finite element software. The validity of the numerical model used is verified by comparing numerical results to experimental data.


2016 ◽  
Vol 20 (1) ◽  
pp. 139-151
Author(s):  
Juechun Xu ◽  
Chengqing Wu ◽  
Jun Li ◽  
Jintao Cui

Ultra-high-performance fibre-reinforced concrete has exceptional mechanical properties including high compressive and tensile strength as well as high fracture energy. It has been proved to be much higher blast resistant than normal concrete. In this article, flexural behaviours of ultra-high-performance fibre-reinforced concrete columns were investigated through full-scale tests. Two 200 mm × 200 mm × 2500 mm columns with and without axial loading were investigated under three-point bending tests, and their load–displacement relationships were recorded and the moment curvatures were derived. The derived moment curvature relationships of ultra-high-performance fibre-reinforced concrete columns were then incorporated into a computationally efficient one-dimensional finite element model, which utilized Timoshenko beam theory, to determine flexural response of ultra-high-performance fibre-reinforced concrete columns under blast loading. After that, the one-dimensional finite element model was validated with the real blast testing data. The results show good correlation between the advanced finite element model and experimental results. The feasibility of utilizing the one-dimensional finite element model for simulating both high-strength reinforced concrete and ultra-high-performance fibre-reinforced concrete columns against blast loading conditions is confirmed.


2018 ◽  
Vol 183 ◽  
pp. 02005
Author(s):  
Ezio Cadoni ◽  
Matteo Dotta ◽  
Daniele Forni

The paper presents the results obtained on cylindrical Ultra High Performance Fibre Reinforced Concrete specimens with diameter of 30mm and a height of 60mm under compression at high stress rate (1.7–2.3 TPa/s). Four different percentages of fibre reinforcement are considered (1, 2, 3, and 4% fibre content) and compared with the results of the matrix (UHPC). A slight reduction of the strength and fracture time with the introduction of fibres is observed. The experimental results are analysed and discussed with the intent to better understand the mechanical behaviour of UHPFRC materials in case of dynamic event under service loading conditions.


2008 ◽  
Vol 17 (11) ◽  
pp. 316-317
Author(s):  
Daniel de MATTEIS ◽  
Pierre MARCHAND ◽  
Aude PETEL ◽  
Thierry THIBAUX ◽  
Nicolas FABRY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document