The Operational Phase Performance of Centimeter-Level Augmentation Service (CLAS)

Author(s):  
Rui Hirokawa ◽  
Kenji Nakakuki ◽  
Seigo Fujita ◽  
Yuki Sato ◽  
Akinari Uehara
Keyword(s):  
Author(s):  
Françoise Carvalho ◽  
Célia Monamy ◽  
Philippe Rochette ◽  
Didier Delcuvellerie
Keyword(s):  

2000 ◽  
Vol 2 (3) ◽  
pp. 237-244 ◽  
Author(s):  
Jaroslav Rehácek ◽  
Zdenek Hradil ◽  
Miloslav Dusek ◽  
Ondrej Haderka ◽  
Martin Hendrych

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3564
Author(s):  
Arnas Majumder ◽  
Laura Canale ◽  
Costantino Carlo Mastino ◽  
Antonio Pacitto ◽  
Andrea Frattolillo ◽  
...  

The building sector is known to have a significant environmental impact, considering that it is the largest contributor to global greenhouse gas emissions of around 36% and is also responsible for about 40% of global energy consumption. Of this, about 50% takes place during the building operational phase, while around 10–20% is consumed in materials manufacturing, transport and building construction, maintenance, and demolition. Increasing the necessity of reducing the environmental impact of buildings has led to enhancing not only the thermal performances of building materials, but also the environmental sustainability of their production chains and waste prevention. As a consequence, novel thermo-insulating building materials or products have been developed by using both locally produced natural and waste/recycled materials that are able to provide good thermal performances while also having a lower environmental impact. In this context, the aim of this work is to provide a detailed analysis for the thermal characterization of recycled materials for building insulation. To this end, the thermal behavior of different materials representing industrial residual or wastes collected or recycled using Sardinian zero-km locally available raw materials was investigated, namely: (1) plasters with recycled materials; (2) plasters with natural fibers; and (3) building insulation materials with natural fibers. Results indicate that the investigated materials were able to improve not only the energy performances but also the environmental comfort in both new and in existing buildings. In particular, plasters and mortars with recycled materials and with natural fibers showed, respectively, values of thermal conductivity (at 20 °C) lower than 0.475 and 0.272 W/(m⋅K), while that of building materials with natural fibers was always lower than 0.162 W/(m⋅K) with lower values for compounds with recycled materials (0.107 W/(m⋅K)). Further developments are underway to analyze the mechanical properties of these materials.


2021 ◽  
Vol 1 ◽  
pp. 1023-1032
Author(s):  
Erik Aleksander Veitch ◽  
Thomas Kaland ◽  
Ole Andreas Alsos

AbstractArtificial intelligence is transforming how we interact with vehicles. We examine the case of Maritime Autonomous Surface Ships (MASS), which are emerging as a safer and more effective solution for maritime transportation. Despite the focus on autonomy, humans are predicted to have a central role in MASS operations from a Shore Control Centre (SCC). Here, operators will provide back-up control in the event of system failure. There are signification design challenges with such a system. The most critical is human-system interaction in autonomy (H-SIA). We consider humans as the source of resilience in the system for adapting to unexpected events and managing safety. We ask, can Human-Centred Design (HCD) be used to create resilient interactions between MASS and SCC? Work has been done in resilience engineering for complex systems but has not been extended to H-SIA in transportation. “Resilient interaction design” is relevant as we progress from design to operational phase. We adopted the ISO 9421-210 guideline to structure our HCD approach. The result is an SCC designed for 1 Autonomy Operator (AO). The contribution is a demonstration of how resilient interaction design may lead to safer and more effective H-SIA in transportation.


2003 ◽  
Vol 17 (04) ◽  
pp. 153-158 ◽  
Author(s):  
HONG-YI FAN ◽  
HAI-LIANG LU

A new generalized Jaynes–Cummings model based on two-mode photon number-difference and operational phase is presented. The excitation of the atom is proportional to the net variation of the competion of two modes of photons in some nonlinear process. The corresponding Hamiltonian is diagonalized by virtue of the supersymmetric transform.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3788
Author(s):  
Francesco Asdrubali ◽  
Marta Roncone ◽  
Gianluca Grazieschi

The construction sector is one of the most energy-intensive in the industrialized countries. In order to limit climate change emissions throughout the entire life cycle of a building, in addition to reducing energy consumption in the operational phase, attention should also be paid to the embodied energy and CO2 emissions of the building itself. The purpose of this work is to review data on embodied energy and GWP derived from EPDs of different types of windows, to identify the LCA phases, the most impacting materials and processes from an environmental point of view and to perform a critical analysis of the outcomes. The results show a strong dependence on the typology of the frame, with wooden windows having competitive performances: lower average primary energy non-renewable (1123 MJ/FU), higher average primary energy renewable (respectively 817 MJ/FU) and lower global warming potential (54 kgCO2eq/FU). More transparency and standardization in the information conveyed by the program operators is, however, desirable for a better comparability of windows performances. In particular, the inclusion of the operational impact in the EPD is sporadic, but strongly important, since it can be the most impactful phase.


1995 ◽  
Vol 51 (3) ◽  
pp. 2575-2593 ◽  
Author(s):  
V. Bužek ◽  
C. H. Keitel ◽  
P. L. Knight

Author(s):  
Hana Navratilova

A newly excavated ostracon from Abydos bearing the concluding chapter of “The Instruction (a.k.a. Teaching) of King Amenemhat” opens up an interesting enquiry. An ostracon found in the immediate vicinity of a New Kingdom royal memorial temple and carrying an excerpt from a major literary text is an important find, as it develops our insight into New Kingdom educational practices and intellectual quests. The range of ostraca types and text genres appearing in the area of the temple of Ramesses II points to a fully functional temple organization with a building phase and an operational phase, with supplies and literate personnel on site, potentially in different administrative roles. Studies in educational and intellectual pursuits, in turn, are key to expanding our comprehension of the functions—and enjoyment—of Egyptian culture.


Sign in / Sign up

Export Citation Format

Share Document