Comparing the Timescales in Public, Precise Ephemeris Products

Author(s):  
William Konyk
Keyword(s):  
Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3376 ◽  
Author(s):  
Yuan Du ◽  
Guanwen Huang ◽  
Qin Zhang ◽  
Yang Gao ◽  
Yuting Gao

Real-time kinematic (RTK) positioning is a satellite navigation technique that is widely used to enhance the precision of position data obtained from global navigation satellite systems (GNSS). This technique can reduce or eliminate significant correlation errors via the enhancement of the base station observation data. However, observations received by the base station are often interrupted, delayed, and/or discontinuous, and in the absence of base station observation data the corresponding positioning accuracy of a rover declines rapidly. With the strategies proposed till date, the positioning accuracy can only be maintained at the centimeter-level for a short span of time, no more than three min. To address this, a novel asynchronous RTK method (that addresses asynchronous errors) that can bridge significant gaps in the observations at the base station is proposed. First, satellite clock and orbital errors are eliminated using the products of the final precise ephemeris during post-processing or the ultra-rapid precise ephemeris during real-time processing. Then the tropospheric error is corrected using the Saastamoinen model and the asynchronous ionospheric delay is corrected using the carrier phase measurements from the rover receiver. Finally, a straightforward first-degree polynomial function is used to predict the residual asynchronous error. Experimental results demonstrate that the proposed approach can achieve centimeter-level accuracy for as long as 15 min during interruptions in both real-time and post-processing scenarios, and that the accuracy of the real-time scheme can be maintained for 15 min even when a large systematic error is projected in the U direction.


2013 ◽  
Vol 353-356 ◽  
pp. 3410-3413 ◽  
Author(s):  
Shao Feng Xie ◽  
Peng Fei Zhang ◽  
Li Long Liu

Using Chebyshev polynomial to fit precise ephemeris of GPS, the nodes selection has a certain influence on the precision. In this paper we use 3 kinds of precise ephemeris ( IGF, IGR, IGU ) to analyze the difference precision of randomly selected interpolation node and Chebyshev points fitting orbit and compare the difference and precision of fitting orbit by 3 kinds of ephemeris and orbit provided by IGS. The result shows that using Chebyshev points to fit precise ephemeris, the precision of IGF and IGR can achieve mm levels, the precision of IGU can achieve cm levels.


2009 ◽  
Vol 5 (S263) ◽  
pp. 106-109
Author(s):  
Julia Venturini ◽  
Tabaré Gallardo

AbstractComet-like orbits with low perihelion distances tend to be affected by relativistic effects. In this work we discuss the origin of the relativistic corrections, how they affect the orbital evolution and how to implement these corrections in a numerical integrator. We also propose a model that mimics the principal relativistic effects and, contrary to the original “exact” formula, has low computational cost. Our model is appropriated for numerical simulations but not for precise ephemeris computations.


2011 ◽  
Vol 64 (S1) ◽  
pp. S113-S126 ◽  
Author(s):  
Hairong Guo ◽  
Haibo He ◽  
Jinlong Li ◽  
Aibing Wang

Centimetre-level RTK solutions are mainly influenced by satellite orbit errors, ionospheric and tropospheric delays, and measurement noise (including multipath effects). Estimation and mitigation of the main errors for the CM-level Compass RTK solutions over medium-long baselines are investigated. Tests conducted for this research lead to the following conclusions: 1.For 100 km baselines, a 4 cm error in height component will be induced by a 10 m orbit error. For longer baselines, rapid precise ephemeris will be needed for CM-level accuracy RTK solutions.2.The residual ionospheric delay error can be eliminated using the optimal triple-frequency ionosphere-free linear combination with the coefficients of 2·6087, −0·5175 and −1·0912 respectively for observations on f1, f2 and f3 frequencies. This combination is optimal in terms of its noise level, e.g., the noise is only amplified three times. It can be used for high accuracy RTK positioning.3.The residual tropospheric delay can be resolved for the introduced relative zenith tropospheric delay (RZTD) parameters.It is shown that the RTK solutions estimated from the least squares (LS) with the RZTD parameters are worse than that without these parameters. For instance, the errors in the height components are amplified approximately three times, which may be caused by the strong correlation between the introduced RZTD parameters and the height components. However, considering the fact that the residual zenith tropospheric delays vary slowly with time and the variation can be assumed to follow a random walk process, the RTK solutions can be improved using the Kalman filter and a priori information for the RZTD parameters.


2003 ◽  
Vol 26 (5) ◽  
pp. 781-785 ◽  
Author(s):  
Deok-Jin Lee ◽  
Tae Soo No ◽  
Seok-Woo Choi ◽  
Sang-Ryul Lee ◽  
Hak-Jung Kim ◽  
...  
Keyword(s):  

2017 ◽  
Vol 24 (1) ◽  
pp. 285-300
Author(s):  
Henryk Jafernik ◽  
Janusz Ćwiklak ◽  
Kamil Krasuski ◽  
Jarosław Kozuba

Abstract Single Point Positioning (SPP) method is widely used in air, marine, and land navigation to determine the user’s position in real time and post factum. A typical accuracy for this method of determining the user’s position in the static mode is approximately 10 meters. In air operations, the SPP method accuracy can be several times lower and that may cause problems with precise positioning of an aircraft. The authors of this article presented preliminary results of research concerning aircraft positioning in the kinematic mode based on GPS observations. For this purpose, an in-flight experiment, in which a Cessna 172 aircraft was used, was performed at the airport in Mielec, Poland. The aircraft was equipped with a dual-frequency Topcon TPS HiperPro receiver, which was recording satellite observations with 1-second interval. The aircraft position was determined using the least-squares method (LSM) in the RTKLIB (RTKPOST module) software. Two research tests were performed within the scope of the experiment, i.e. in test I the aircraft position was determined on the basis of raw GPS observations and the broadcast ephemeris data whereas in test II precision products of the IGS were used, such as: precise ephemeris SP3, DCB hardware delay, clock bias data of GPS satellites and receivers in the CLK format, data of the ionosphere maps based on IONEX format, and phase center calibration of GPS satellites and receivers in the ANTEX format. The use of the IGS precision products improved the accuracy of the X coordinate to 1 m, Y to 0.7 m and Z to 1.3 m. On the basis of tests I and II, an additional RMS-3D parameter was determined, whose mean value was 4 m.


2021 ◽  
Vol 2093 (1) ◽  
pp. 012028
Author(s):  
Jiawen Yao ◽  
Shan Li ◽  
Xiaotong Gu ◽  
Yanhao Yin ◽  
Geng Chen ◽  
...  

Abstract Aiming at the complex dynamic changes of inter-satellite link signals, this paper proposes a low-complexity method to calculate dynamic parameters of inter-satellite link signals so as to simulate inter-satellite link signals with complex dynamic characteristics. Based on the precise ephemeris, the algorithm is used to calculate the transmission delay and Doppler frequency of the signals in an inertial frame of reference by using iteration and interpolation. The calculation result is compared with the result obtained by using the simulation software of the global navigation system. It is found that the error of the transmission delay is at the nanosecond level and the error of Doppler frequency is at the Hertzian level. Therefore, the dynamic signal simulation accuracy can meet the requirements of load testing and verification of inter-satellite links. The algorithm is simple to implement.


Author(s):  
Ingrid Pelisoli ◽  
R T Marsh ◽  
R P Ashley ◽  
Pasi Hakala ◽  
A Aungwerojwit ◽  
...  

Abstract Accreting magnetic white dwarfs offer an opportunity to understand the interplay between spin-up and spin-down torques in binary systems. Monitoring of the white dwarf spin may reveal whether the white dwarf spin is currently in a state of near-equilibrium, or of uni-directional evolution towards longer or shorter periods, reflecting the recent history of the system and providing constraints for evolutionary models. This makes the monitoring of the spin history of magnetic white dwarfs of high interest. In this paper we report the results of a campaign of follow-up optical photometry to detect and track the 39 sec white dwarf spin pulses recently discovered in Hubble Space Telescope data of the cataclysmic variable V1460 Her. We find the spin pulsations to be present in g-band photometry at a typical amplitude of 0.4 per cent. Under favourable observing conditions, the spin signal is detectable using 2-meter class telescopes. We measured pulse-arrival times for all our observations, which allowed us to derive a precise ephemeris for the white dwarf spin. We have also derived an orbital modulation correction that can be applied to the measurements. With our limited baseline of just over four years, we detect no evidence yet for spin-up or spin-down of the white dwarf, obtaining a lower limit of $|P/\dot{P}| > 4\times 10^{7}$ years, which is already 4 to 8 times longer than the timescales measured in two other cataclysmic variable systems containing rapidly rotating white dwarfs, AE Aqr and AR Sco.


Sign in / Sign up

Export Citation Format

Share Document